[ACG11]
Arbarello, E., Cornalba, M. and Griffiths, P. A., Geometry of algebraic curves, Vol. II, with a contribution by Joseph Daniel Harris (Springer, Berlin, 2011).

[Bea86]
Beauville, A.,
*Le groupe de monodromie des familles universelles d’hypersurfaces et d’intersections complètes (The monodromy group of universal families of hypersurfaces and of complete intersections)*
, in Proc. conf. on complex analysis and algebraic geometry, Göttingen, 1985, Lecture Notes in Mathematics, vol. 1194 (Springer, Berlin, 1986), 8–18.

[BL16]
Bolognesi, M. and Lönne, M.,
*Mapping class groups of trigonal loci.*
, Selecta Math. (N.S.)
22 (2016), 417–445.

[Bus10]
Buser, P., Geometry and spectra of compact Riemann surfaces (Birkhäuser, Boston, MA, 2010) (Reprint of the 1992 original edition).

[CV09]
Castryck, W. and Voight, J.,
*On nondegeneracy of curves*
, Algebra Number Theory
3 (2009), 255–281.

[CL17]
Crétois, R. and Lang, L., *The vanishing cycles of curves in toric surfaces II*, Preprint (2017),arXiv:1706.07252. [DIK00]
Degtyarev, A., Itenberg, I. and Kharlamov, V., Real Enriques surfaces (Springer, Berlin, 2000).

[DL81]
Dolgachev, I. and Libgober, A.,
*On the fundamental group of the complement to a discriminant variety*
, in Proc. conf. on algebraic geometry, Proc. Conf., Chicago Circle, 1980, Lecture Notes in Mathematics, vol. 862 (Springer, Berlin, New York, 1981), 1–25.

[Don00]
Donaldson, S. K.,
*Polynomials, vanishing cycles and Floer homology*
, in Mathematics: frontiers and perspectives (American Mathematical Society, Providence, RI, 2000), 55–64.

[ES91]
Earle, C. J. and Sipe, P. L.,
*Families of Riemann surfaces over the punctured disk*
, Pacific J. Math.
150 (1991), 79–96.

[FM11]
Farb, B. and Margalit, D., A primer on mapping class groups (Princeton University Press, Princeton, NJ, 2011).

[FPT00]
Forsberg, M., Passare, M. and Tsikh, A.,
*Laurent determinants and arrangements of hyperplane amoebas*
, Adv. Math.
151 (2000), 45–70.

[Ful93]
Fulton, W., Introduction to toric varieties: the 1989 William H. Roever lectures in geometry (Princeton University Press, Princeton, NJ, 1993).

[GKZ08]
Gelfand, I. M., Kapranov, M. M. and Zelevinsky, A. V., Discriminants, resultants, and multidimensional determinants, Modern Birkhäuser Classics (Birkhäuser, Boston, MA, 2008), 523 (Reprint of the 1994 edition).

[GH94]
Griffiths, P. and Harris, J., Principles of algebraic geometry, second edition (John Wiley & Sons Ltd., New York, NY, 1994).

[HPPS14]
Haase, C., Paffenholz, A., Piechnik, L. C. and Santos, F., *Existence of unimodular triangulations: positive results*, Preprint (2014), arXiv:1405.1687. [Hum79]
Humphries, S. P.,
*Generators for the mapping class group*
, in Proc. 2nd Sussex conf. on topology of low-dimensional manifolds, 1977, Lecture Notes in Mathematics, vol. 722 (Springer, Berlin, 1979), 44–47.

[IMS09]
Itenberg, I., Mikhalkin, G. and Shustin, E., Tropical algebraic geometry, second edition (Birkhäuser, Basel, 2009).

[KO06]
Kenyon, R. and Okounkov, A.,
*Planar dimers and Harnack curves*
, Duke Math. J.
131 (2006), 499–524.

[Kho78]
Khovanskii, A. G.,
*Newton polyhedra and toroidal varieties*
, Funct. Anal. Appl.
11 (1978), 289–296.

[Koe91]
Koelman, R., *The number of moduli of families of curves on toric surfaces*, PhD thesis, Katholieke Universiteit te Nijmegen (1991).

[Kri13]
Krichever, I., *Amoebas, Ronkin function and Monge–Ampère measures of algebraic curves with marked points*, Preprint (2013), arXiv:1310.8472. [Lan15a]
Lang, L., *A generalization of simple Harnack curves*, Preprint (2015), arXiv:1504.07256. [Lön09]
Lönne, M.,
*Fundamental groups of projective discriminant complements*
, Duke Math. J.
150 (2009), 357–405.

[MM76]
Mandelbaum, R. and Moishezon, B.,
*On the topological structure of non-singular algebraic surfaces in **CP*
^{3}
, Topology
15 (1976), 23–40.

[Mik00]
Mikhalkin, G.,
*Real algebraic curves, the moment map and amoebas*
, Ann. of Math. (2)
151 (2000), 309–326; MR 1745011 (2001c:14083).

[MR01]
Mikhalkin, G. and Rullgård, H.,
*Amoebas of maximal area*
, Int. Math. Res. Not. IMRN
2001 (2001), 441–451.

[Oda88]
Oda, T., Convex bodies and algebraic geometry: an introduction to the theory of toric varieties (Springer, Berlin, 1988).

[Oga07]
Ogata, S., *Projective normality of nonsingular toric varieties of dimension three*, Preprint (2007), arXiv:0712.0444. [Ola17]
Olarte, J. A., *The Moduli space of Harnack curves in toric surfaces*, Preprint (2017),arXiv:1706.02399. [PR04]
Passare, M. and Rullgård, H.,
*Amoebas, Monge–Ampère measures, and triangulations of the Newton polytope*
, Duke Math. J.
121 (2004), 481–507.

[Sal16]
Salter, N., *On the monodromy group of the family of smooth plane curves*, Preprint (2016),arXiv:1610.04920. [Sal17]
Salter, N., *Monodromy and vanishing cycles in toric surfaces*, Preprint (2017),arXiv:1710.08042. [Sip82]
Sipe, P. L.,
*Roots of the canonical bundle of the universal Teichmüller curve and certain subgroups of the mapping class group*
, Math. Ann.
260 (1982), 67–92.

[Vir84]
Viro, O. Ya.,
*Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7*
, in Proc. int. conf. on topology, general and algebraic topology, and applications, Leningrad, 1982, Lecture Notes in Mathematics, vol. 1060 (Springer, Berlin, 1984), 187–200.

[Voi07a]
Voisin, C., Hodge theory and complex algebraic geometry. I. Translated from the French by Leila Schneps (Cambridge University Press, Cambridge, 2007).

[Voi07b]
Voisin, C., Hodge theory and complex algebraic geometry. II. Translated from the French by Leila Schneps (Cambridge University Press, Cambridge, 2007).

[Waj77]
Wajnryb, B.,
*The Lefshetz vanishing cycles on a projective nonsingular plane curve*
, Math. Ann.
229 (1977), 181–191.