We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove vanishing of the μ-invariant of the p-adic Katz L-function in N. M. Katz [p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199–297].
[Cha90]Chai, C.-L., Arithmetic minimal compactification of the Hilbert–Blumenthal moduli spaces, Ann. of Math. (2)131 (1990), 541–554.Google Scholar
[Del71]
[Del71]Deligne, P., Travaux de Shimura, Séminaire Bourbaki, Exposé 389, Lecture Notes in Mathematics, vol. 244 (Springer, Berlin, 1971), 123–165.Google Scholar
[Del79]
[Del79]Deligne, P., Variétés de Shimura: interprétation modulaire, et techniques de construction de modéles canoniques, Proc. Sympos. Pure Math.33 (1979), 247–290.CrossRefGoogle Scholar
[DR80]
[DR80]Deligne, P. and Ribet, K. A., Values of abelian L-functions at negative integers over totally real fields, Invent. Math.59 (1980), 227–286.Google Scholar
[Gil91]
[Gil91]Gillard, R., Remarques sur l’invariant mu d’Iwasawa dans le cas CM, Sémin. Théor. Nombres Bordeaux, Sér. II3 (1991), 13–26.CrossRefGoogle Scholar
[Hid04]
[Hid04]Hida, H., p-adic automorphic forms on Shimura varieties, Springer Monographs in Mathematics (Springer, Berlin, 2004) (a list of errata available at http://www.math.ucla.edu/∼hida ).CrossRefGoogle Scholar
[Hid09]
[Hid09]Hida, H., Irreducibility of the Igusa tower, Acta Math. Sin. (Engl. Ser.)25 (2009), 1–20.CrossRefGoogle Scholar
[Hid10]
[Hid10]Hida, H., The Iwasawa μ-invariant of p-adic Hecke L-functions, Ann. of Math. (2)172 (2010), 41–137.Google Scholar
[HT93]
[HT93]Hida, H. and Tilouine, J., Anticyclotomic Katz p-adic L-functions and congruence modules, Ann. Sci. Éc. Norm. Supér. (4)26 (1993), 189–259.Google Scholar
[Kat78a]
[Kat78a]Katz, N. M., p-adic L-functions for CM fields, Invent. Math.49 (1978), 199–297.CrossRefGoogle Scholar
[Kat78b]
[Kat78b]Katz, N. M., Serre–Tate local moduli, in Surfaces algébriques, Lecture Notes in Mathematics, vol. 868 (Springer, Berlin, 1978), 138–202.Google Scholar
[Kot92]
[Kot92]Kottwitz, R., Points on Shimura varieties over finite fields, J. Amer. Math. Soc.5 (1992), 373–444.Google Scholar
[Mum94]
[Mum94]Mumford, D., Abelian varieties, TIFR Studies in Mathematics (Oxford University Press, Oxford, 1994).Google Scholar
[Shi66]
[Shi66]Shimura, G., Moduli and fibre system of abelian varieties, Ann. of Math. (2)83 (1966), 294–338.Google Scholar
[Shi75]
[Shi75]Shimura, G., On some arithmetic properties of modular forms of one and several variables, Ann. of Math. (2)102 (1975), 491–515.Google Scholar
[Shi98]
[Shi98]Shimura, G., Abelian varieties with complex multiplication and modular functions (Princeton University Press, Princeton, 1998).CrossRefGoogle Scholar
[Shi00]
[Shi00]Shimura, G., Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, vol. 82 (American Mathematical Society, Providence, RI, 2000).Google Scholar