Skip to main content Accessibility help
×
Home

Bernoulliness of $[T,\text{Id}]$ when $T$ is an irrational rotation: towards an explicit isomorphism

  • CHRISTOPHE LEURIDAN (a1)

Abstract

Let $\unicode[STIX]{x1D703}$ be an irrational real number. The map $T_{\unicode[STIX]{x1D703}}:y\mapsto (y+\unicode[STIX]{x1D703})\!\hspace{0.6em}{\rm mod}\hspace{0.2em}1$ from the unit interval $\mathbf{I}= [\!0,1\![$ (endowed with the Lebesgue measure) to itself is ergodic. In a short paper [Parry, Automorphisms of the Bernoulli endomorphism and a class of skew-products. Ergod. Th. & Dynam. Sys.16 (1996), 519–529] published in 1996, Parry provided an explicit isomorphism between the measure-preserving map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ and the unilateral dyadic Bernoulli shift when $\unicode[STIX]{x1D703}$ is extremely well approximated by the rational numbers, namely, if

$$\begin{eqnarray}\inf _{q\geq 1}q^{4}4^{q^{2}}~\text{dist}(\unicode[STIX]{x1D703},q^{-1}\mathbb{Z})=0.\end{eqnarray}$$
A few years later, Hoffman and Rudolph [Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann. of Math. (2)156 (2002), 79–101] showed that for every irrational number, the measure-preserving map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ is isomorphic to the unilateral dyadic Bernoulli shift. Their proof is not constructive. In the present paper, we relax notably Parry’s condition on $\unicode[STIX]{x1D703}$ : the explicit map provided by Parry’s method is an isomorphism between the map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ and the unilateral dyadic Bernoulli shift whenever
$$\begin{eqnarray}\inf _{q\geq 1}q^{4}~\text{dist}(\unicode[STIX]{x1D703},q^{-1}\mathbb{Z})=0.\end{eqnarray}$$
This condition can be relaxed again into
$$\begin{eqnarray}\inf _{n\geq 1}q_{n}^{3}~(a_{1}+\cdots +a_{n})~|q_{n}\unicode[STIX]{x1D703}-p_{n}|<+\infty ,\end{eqnarray}$$
where $[0;a_{1},a_{2},\ldots ]$ is the continued fraction expansion and $(p_{n}/q_{n})_{n\geq 0}$ the sequence of convergents of $\Vert \unicode[STIX]{x1D703}\Vert :=\text{dist}(\unicode[STIX]{x1D703},\mathbb{Z})$ . Whether Parry’s map is an isomorphism for every $\unicode[STIX]{x1D703}$ or not is still an open question, although we expect a positive answer.

Copyright

References

Hide All
[1]Adler, R. L. and Shields, P. C.. Skew products of Bernoulli shifts with rotations. Israel J. Math. 12 (1972), 215222.
[2]Adler, R. L. and Shields, P. C.. Skew products of Bernoulli shifts with rotations. Israel J. Math. 19 (1974), 228236.
[3]Feldman, J.. New K-automorphisms and a problem of Kakutani. Israel J. Math. 24(1) (1976), 1638.
[4]Feldman, J. and Rudolph, D.. Standardness of sequences of 𝜎-fields given by certain endomorphisms. Fund. Math. 157 (1998), 175189.
[5]Heicklen, D. and Hoffman, C.. [T, T -1] is not standard. Ergod. Th. & Dynam. Sys. 18(4) (1998), 875878.
[6]Hoffman, C. and Rudolph, D.. Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann. of Math. (2) 156 (2002), 79101.
[7]Hoffman, C. and Rudolph, D.. A dyadic endomorphism which is Bernoulli but not standard. Israel J. Math. 130 (2002), 365379.
[8]Kalikow, S.. T, T -1 transformation is not loosely Bernoulli. Ann. of Math. (2) 115(2) (1982), 393409.
[9]Khintchine, A.. Metrische Kettenbruchprobleme. Compos. Math. 1 (1935), 361382.
[10]Laurent, S.. Filtrations à temps discret négatif. PhD Thesis, Université de Strasbourg, Strasbourg, 2004.
[11]Leuridan, C.. Filtration d’une marche aléatoire stationnaire sur le cercle. Séminaire de Probabilités XXXVI (Lecture Notes in Mathematics, 1801). Eds. Azéma, J., Émery, M., Ledoux, M. and Yor, M.. Springer, Berlin, 2002, pp. 335347.
[12]Leuridan, C.. Filtrations associated to some two-to-one transformations. Séminaire de Probabilités LI. Springer, Berlin, to be published.
[13]Leuridan, C.. Characterizations of convergents and semi-convergents in continued fraction expansions, in preparation. French version submited and available on https://hal.archives-ouvertes.fr/hal-02272389.
[14]Marklof, J. and Strömbergsson, A.. The three gap theorem and the space of lattices. Amer. Math. Monthly 124(8) (2017), 741745.
[15]Meilijson, I.. Mixing properties of a class of skew-products. Israel J. Math. 19 (1974), 266270.
[16]Parry, W.. Automorphisms of the Bernoulli endomorphism and a class of skew-products. Ergod. Th. & Dynam. Sys. 16 (1996), 519529.
[17]Resnick, S. I.. A Probability Path. Birkhäuser, Basel, 2014, reprint of the 2005 edition.
[18]Sós, V. T.. On the distribution mod 1 of the sequence n𝛼. Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1 (1958), 127134.
[19]Surányi, J.. Über die Anordnung der Vielfachen einer reellen Zahl mod 1. Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1 (1958), 107111.
[20]Świerczkowski, S.. On successive settings of an arc on the circumference of a circle. Fund. Math. 46(2) (1959), 187189.
[21]Vershik, A. M.. Decreasing sequences of measurable partitions, and their applications. Dokl. Akad. Nauk SSSR 193 (1970), 748751; Engl. transl. Soviet Math. Dokl. 11 (1970), 1007–1011.

Keywords

MSC classification

Bernoulliness of $[T,\text{Id}]$ when $T$ is an irrational rotation: towards an explicit isomorphism

  • CHRISTOPHE LEURIDAN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.