Skip to main content Accessibility help

Invariant Jordan curves of Sierpiński carpet rational maps



In this paper, we prove that if $R:\widehat{\mathbb{C}}\rightarrow \widehat{\mathbb{C}}$ is a postcritically finite rational map with Julia set homeomorphic to the Sierpiński carpet, then there is an integer $n_{0}$ , such that, for any $n\geq n_{0}$ , there exists an $R^{n}$ -invariant Jordan curve $\unicode[STIX]{x1D6E4}$ containing the postcritical set of $R$ .



Hide All
[Ber] Bernard, J.. Dynamique des perturbations d’un exemple de Lattès. PhD Thesis, Université de Paris-Sud, Orsay, 1994.
[BLM] Bonk, M., Lyubich, M. and Merenkov, S.. Quasisymmetries of Sierpiński carpet Julia sets. Preprint, 2013.
[BM] Bonk, M. and Meyer, D.. Expanding Thurston maps. Available at
[CFKP] Cannon, J. W., Floyd, W. J., Kenyon, R. and Parry, W. R.. Constructing rational maps from subdivision rules. Conform. Geom. Dyn. 7 (2003), 76102 (electronic).
[CFP] Cannon, J. W., Floyd, W. J. and Parry, W. R.. Constructing subdivision rules from rational maps. Conform. Geom. Dyn. 11 (2007), 128136 (electronic).
[CGNPP] Cordwell, K., Gilbertson, S., Nuechterlein, N., Pilgrim, K. M. and Pinella, S.. On the classification of critically fixed rational maps. Conform. Geom. Dyn. 19 (2015), 5194 (electronic).
[Dav] Daverman, R. J.. Decompositions of Manifolds (Pure and Applied Mathematics, 124) . Academic Press, Orlando, FL, 1986.
[Dev] Devaney, R. L.. Singular perturbations of complex polynomials. Bull. Amer. Math. Soc. (N.S.) 50(3) (2013), 391429.
[DH] Douady, A. and Hubbard, J.. Etude Dynamique des Polynomes Complexes, I, II. Publications Mathématiques d’Orsay, Université de Paris-Sud, Départment de Mathématiques, Orsay, 1984/5.
[Eps] Epstein, A.. Bounded hyperbolic components of quadratic rational maps. Ergod. Th. & Dynam. Sys. 20(3) (2000), 727748.
[HP09] Haïssinsky, P. and Pilgrim, K. M.. Coarse expanding conformal dynamics. Astérisque 325 (2009), viii + 139.
[LMS1] Lodge, R., Mikulich, Y. and Schleicher, D.. Combinatorial properties of Newton maps. Preprint, 2015, arXiv:1510.02761.
[LMS2] Lodge, R., Mikulich, Y. and Schleicher, D.. A classification of postcritically finite Newton maps. Preprint, 2015, arXiv:1510.02771.
[McM1] McMullen, C. T.. The classification of conformal dynamical systems. Current Developments in Mathematics, 1995 (Cambridge, MA). International Press, Cambridge, MA, 1994, pp. 323360.
[McM2] McMullen, C. T.. Automorphisms of rational maps. Holomorphic Functions and Moduli I (Mathematical Sciences Research Institute Publications, 10) . Springer, New York, 1988, pp. 3160.
[Mil1] Milnor, J.. Geometry and dynamics of quadratic rational maps. Experiment. Math. 2(1) (1993), 3783 With an appendix by the author and Tan Lei.
[Mil2] Milnor, J.. Dynamics in One Complex Variable (Introductory Lectures) . Friedr. Vieweg & Sohn, Braunschweig, 1999.
[Ree1] Rees, M.. Views of parameter space: Topographer and Resident. Astérisque 288 (2003), vi+418.
[Ree2] Rees, M.. Persistent Markov partitions for rational maps. Preprint, 2013, arXiv:1306.6166.
[Ros] Rosetti, B.. Sur la détermination des fractions rationnelles postcritiquement finies par des graphes planaires finis. PhD Thesis, Université Paul Sabatier, 2015.
[Why1] Whyburn, G. T.. Topological characterization of the Sierpiński curve. Fund. Math. 45 (1958), 320324.
[Why2] Whyburn, G. T.. Analytic Topology (American Mathematical Society Colloquium Publications, XXVIII) . American Mathematical Society, Providence, RI, 1963.
[Wit] Wittner, B.. On the deformation loci of rational maps of degree two. PhD Thesis, Cornell University, 1988.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed