[An]
Anosov, D.. Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Steklov.
90 (1967), 3–210.
[ArP]
Araújo, V. and Pacifico, M. J.. Three Dimensional Flows
(Ergebnisse der Mathematik und ihrer Grenzgebiete)
. Springer, Berlin, 2010.
[Ba]
Barbot, T.. Flots d’Anosov sur les variétés graphées au sens de Waldhausen. Ann. Inst. Fourier (Grenoble)
46 (1996), 1451–1517.
[BaF]
Barbot, T. and Fenley, S.. Pseudo Anosov flows in toroidal manifolds. Geom. Topol.
17 (2013), 1877–1954.
[BBY]
Beguin, F., Bonatti, C. and Yu, B.. Building Anosov flows on 3-manifolds. Preprint, 2014, arXiv:1408.3951.
[BDP]
Bonatti, C., Díaz, L. and Pujals, E.. A C
^{1} -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Ann. of Math. (2)
158(2) (2003), 355–418.
[BoD]
Bonatti, C. and Díaz, L.. Persistent transitive diffeomorphisms. Ann. of Math. (2)
143(2) (1996), 357–396.
[BoDV]
Bonatti, C., Díaz, L. and Viana, M.. Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective
(Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics III)
. Springer, Berlin, 2005.
[BoGHP]
Bonatti, C., Gogolev, A., Hammerlindl, A. and Potrie, R.. Anomalous partially hyperbolic diffeomorphisms III: Pseudo Anosov mapping classes. In preparation.
[BoGP]
Bonatti, C., Gogolev, A. and Potrie, R.. Anomalous partially hyperbolic diffeomorphisms II: Stably ergodic examples. Invent. Math. to appear, doi:10.1007/s00222-016-0663-7
Preprint, 2015,arXiv:1506.07804.
[Boh]
Bohnet, D.. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. J. Mod. Dyn.
7 (2013), 565–604.
[BoL]
Bonatti, C. and Langevin, R.. Un exemple de flot d’Anosov transitif transverse à une tore et non conjugué à une suspension. Ergod. Th. & Dynam. Sys.
14 (1994), 633–643.
[BoPP]
Bonatti, C., Parwani, K. and Potrie, R.. Anomalous partially hyperbolic diffeomorphisms I: Dynamically coherent examples. Ann. Sci. Éc. Norm. Supér, to appear. Preprint 2014, arXiv:1411.1221.
[BoW]
Bonatti, C. and Wilkinson, A.. Transitive partially hyperbolic diffeomorphisms on 3-manifolds. Topology
44 (2005), 475–508.
[BoZ]
Bonatti, C. and Zhang, J.. Transverse foliations on the torus
$\mathbb{T}^{2}$
and partially hyperbolic diffeomorphisms on 3-manifolds. Preprint, 2016, arXiv:1602.04355.
[BP]
Brin, M. and Pesin, Y.. Partially hyperbolic dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat.
38 (1974), 170–212.
[Br1]
Brin, M.. Topological transitivity of one class of dynamic systems and flows of frames on manifolds of negative curvature. Funct. Anal. Appl.
9 (1975), 8–16.
[Br2]
Brin, M.. On dynamical coherence. Ergod. Th. & Dynam. Sys.
23 (2003), 395–401.
[BrBI1]
Brin, M., Burago, D. and Ivanov, S.. On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group. Modern Dynamical Systems and Applications. Cambridge University Press, Cambridge, 2004, pp. 307–312.
[BrBI2]
Brin, M., Burago, D. and Ivanov, S.. Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. J. Mod. Dyn.
3 (2009), 1–11.
[BrG]
Brin, M. and Gromov, M.. On the ergodicity of frame flows. Invent. Math.
60 (1980), 1–8.
[Bri]
Brittenham, M.. Essential laminations in Seifert fibered spaces. Topology
32 (1993), 61–85.
[BrM]
Brin, M. and Manning, A.. Anosov diffeomorphisms with pinched spectrum. Dynamical Systems and Turbulence
(Lecture Notes in Mathematics, 898)
. Eds. Rand, D. and Young, L.-S.. Springer, Berlin, 1981, pp. 48–53.
[BuI]
Burago, D. and Ivanov, S.. Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups. J. Mod. Dyn.
2 (2008), 541–580.
[BuPSW1]
Burns, K., Pugh, C., Shub, M. and Wilkinson, A.. Recent results about stable ergodicity. Proc. Sympos. Amer. Math. Soc.
69 (2001), 327–366.
[BuW]
Burns, K. and Wilkinson, A.. Dynamical coherence and center bunching. Discrete Contin. Dyn. Syst.
22 (2008), 89–100.
[Cal]
Calegari, D.. Foliations and the Geometry of 3-manifolds. Clarendon Press, Oxford, 2008.
[CalD]
Calegari, D. and Dunfield, N.. Laminations and groups of homeomorphisms of the circle. Invent. Math.
152 (2003), 149–204.
[Carr]
Carrasco, P.. Compact dynamical foliations. Ergod. Th. & Dynam. Syst.
35(8) (2015), 2474–2498.
[CC]
Candel, A. and Conlon, L.. Foliations I and II
(Graduate studies in Mathematics, 60)
. American Mathematical Society, Providence, RI, 2003.
[CP]
Crovisier, S. and Potrie, R.. Introduction to partially hyperbolic dynamics. Lecture Notes for a Minicourse at ICTP, 2015. Available in the web page of the conference and the authors.
[CRHRHU]
Carrasco, P., Hertz, M. A. R., Hertz, F. R. and Ures, R.. Partially hyperbolic dynamics in dimension 3. Preprint, 2015, arXiv:1501.00932.
[DoP]
Dolgopyat, D. and Pesin, Y.. Every compact manifold carries a completely hyperbolic diffeomorphism. Ergod. Th. & Dynam. Sys.
22 (2002), 409–437.
[DPU]
Díaz, L., Pujals, E. and Ures, R.. Partial hyperbolicity and robust transitivity. Acta Math.
183 (1999), 1–43.
[Fen]
Fenley, S.. Anosov flows in 3-manifolds. Ann. of Math. (2)
139(1) (1994), 79–115.
[FG1]
Farrell, F. T. and Gogolev, A.. Anosov diffeomorphisms constructed from 𝜋_{
k
}(Diff(S
^{
n
})). J. Topol.
5 (2012), 276–292.
[FG2]
Farrell, F. T. and Gogolev, A.. On bundles that admit fiberwise hyperbolic dynamics. Math. Ann.
364(1) (2016), 401–438.
[FJ]
Farrell, T. F. and Jones, L.. Anosov diffeomorphisms constructed from 𝜋_{1}(Diff(S
^{
n
})). Topology
17 (1978), 273–282.
[FPS]
Fisher, T., Potrie, R. and Sambarino, M.. Dynamical coherence of partially hyperbolic diffeomorphisms of tori isotopic to Anosov. Math. Z.
278 (2014), 149–168.
[Fr]
Franks, J.. Anosov diffeomorphisms. Global Analysis
(Proceedings of Symposia in Pure Mathematics, 14)
. Eds. Chern, S. and Smale, S.. American Mathematical Society, Providence, RI, 1970, pp. 61–93.
[FrW]
Franks, J. and Williams, B.. Anomalous Anosov flows. Global Theory of Dynamical Systems
(Lecture Notes in Mathematics, 819)
. Eds. Nitecki, Z. and Robinson, C.. Springer, Berlin, 1980, pp. 158–174.
[Fu]
Fuller, F. B.. On the surface of section and periodic trajectories. Amer. J. Math.
87 (1965), 473–480.
[Ghy]
Ghys, E.. Flots d’Anosov sur les 3-variétés fibrées en cercles. Ergod. Th. & Dynam. Sys.
4 (1984), 67–80.
[Go]
Gogolev, A.. Partially hyperbolic diffeomorphisms with compact center foliations. J. Mod. Dyn.
5 (2011), 747–767.
[GoL]
Gogolev, A. and Lafont, J. F.. Aspherical products which do not support Anosov diffeomorphisms. Ann. Inst. H. Poincaré, to appear. Preprint, 2015, arXiv:1511.00261.
[Goo]
Goodman, S.. Dehn surgery on Anosov flows. Geometric Dynamics (Rio de Janeiro, 1981)
(Lecture Notes in Mathematics, 1007)
. Springer, Berlin, 1983, pp. 300–307.
[GoORH]
Gogolev, A., Ontaneda, P. and Hertz, F. R.. New partially hyperbolic dynamical systems I. Preprint, 2014, arXiv:1407.7768.
[GoRH]
Gogolev, A. and Hertz, F. R.. Manifolds with higher homotopy which do not support Anosov diffeomorphisms. Bull. Lond. Math. Soc.
46(2) (2014), 349–366.
[GP]
Gourmelon, N. and Potrie, R.. Projectively Anosov diffeomorphisms of surfaces. In preparation.
[GPS]
Grayson, M., Pugh, C. and Shub, M.. Stably ergodic diffeomorphisms. Ann. of Math. (2)
140(2) (1994), 295–330.
[Gr1]
Gromov, M.. Three remarks on geodesic dynamics and fundamental group. Preprint SUNY, 1976. Enseign. Math.
46 (2000), 391–402 reprinted.
[Gr2]
Gromov, M.. Groups of polynomial growth and expanding maps. Publ. Math. Inst. Hautes Études Sci.
53 (1981), 53–73.
[Ha1]
Hammerlindl, A.. Leaf conjugacies in the torus. Ergod. Th. & Dynam. Sys.
33(3) (2013), 896–933.
[Ha2]
Hammerlindl, A.. Integrability and Lyapunov exponents. J. Mod. Dyn.
5(1) (2011), 107–122.
[Ha3]
Hammerlindl, A.. Dynamics of quasi-isometric foliations. Nonlinearity
25 (2012), 1585–1599.
[Ha4]
Hammerlindl, A.. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete Contin. Dyn. Syst.
33(8) (2013), 3641–3669.
[Ha5]
Hammerlindl, A.. Polynomial global product structure. Proc. Amer. Math. Soc.
142(12) (2014), 4297–4303.
[Ha6]
Hammerlindl, A.. On expanding foliations. Bull. Braz. Math. Soc. (N.S.)
46(3) (2015), 407–420.
[Ha7]
Hammerlindl, A.. Ergodic components of partially hyperbolic systems. Preprint, 2014,arXiv:1409.8002.
[HaP1]
Hammerlindl, A. and Potrie, R.. Pointwise partial hyperbolicity in 3-dimensional nilmanifolds. J. Lond. Math. Soc.
89(3) (2014), 853–875.
[HaP2]
Hammerlindl, A. and Potrie, R.. Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group. J. Topol.
8(3) (2015), 842–870.
[HaPe]
Hasselblatt, B. and Pesin, Y.. Partially hyperbolic dynamical systems. Handbook of Dynamical Systems 1B. Eds. Hasselblatt, B. and Katok, A. B.. Elsevier, Burlington, MA, 2006, pp. 1–55.
[HaPS]
Hammerlindl, A., Potrie, R. and Shannon, M.. Seifert manifolds admitting partially hyperbolic diffeomorphisms. In preparation.
[Hat]
Hatcher, A.. Algebraic Topology. Cambridge University Press, Cambridge, 2002.
[HaTh]
Handel, M. and Thurston, W.. Anosov flows on new three manifolds. Invent. Math.
59(2) (1980), 95–103.
[HaU]
Hammerlindl, A. and Ures, R.. Ergodicity and partial hyperbolicity on the 3-torus. Commun. Contemp. Math.
16(4) (2014), 135–158.
[Hi]
Hirsch, M.. Differential Topology
(Springer Graduate Texts in Mathematics, 33)
. Springer, New York, 1976.
[HPS]
Hirsch, M., Pugh, C. and Shub, M.. Invariant Manifolds
(Springer Lecture Notes in Mathematics, 583)
. Springer, Berlin, 1977.
[Hun]
Hungerford, T.. Algebra
(Springer Graduate Texts in Mathematics, 73)
. Reprint of the 1974 original. Springer, Berlin, 1980.
[Le]
Levitt, G.. Feuilletages des variétés de dimension 3 qui sont fibrés en circles. Comment. Math. Helv.
53 (1978), 572–594.
[LTW]
Luzzatto, S., Turelli, S. and War, K.. Integrability of dominated decompositions on three-dimensional manifolds. Preprint, 2014, arXiv:1410.8072.
[Ma1]
Mañé, R.. Persistent manifolds are normally hyperbolic. Bull. Amer. Math. Soc.
80(1) (1974), 90–91.
[Ma2]
Mañé, R.. Contributions to the stability conjecture. Topology
17 (1978), 383–396.
[Mal]
Mal’cev, A.. On a class of homogeneous spaces. Amer. Math. Soc. Transl. Ser. 2
39 (1951).
[Man]
Manning, A.. There are no new Anosov diffeomorphisms on tori. Amer. J. Math
96 (1974), 422–442.
[Ne]
Newhouse, S.. On codimension one Anosov diffeomorphisms. Amer. J. Math.
92 (1970), 761–770.
[No]
Novikov, S.. Topology of foliations (Russian). Tr. Mosk. Mat. Obs.
14 (1965), 248–277.
[OEK]
Osipenko, G., Ershov, E. and Kim, J. H.. Lectures on Invariant Manifolds of Perturbed Differential Equations and Linearization, St. Petersburg State Technical University, St. Petersburg, 1996. pp. 152.
[Pal]
Palmeira, C.. Open manifolds foliated by planes. Ann. of Math. (2)
107 (1978), 109–131.
[Par]
Parwani, K.. On 3-manifolds that support partially hyperbolic diffeomorphisms. Nonlinearity
23 (2010), 589–606.
[Pei]
Peixoto, M.. Structural stability on two-dimensional manifolds. Topology
1 (1962), 101–120.
[Pl]
Plante, J. F.. Foliations of 3-manifolds with solvable fundamental group. Invent. Math.
51 (1979), 219–230.
[PlT]
Plante, J. F. and Thurston, W.. Anosov flows and the fundamental group. Topology
11 (1972), 147–150.
[Pot1]
Potrie, R.. Partial hyperbolicity and foliations in T^{3}
. J. Mod. Dyn.
9 (2015), 81–121.
[Pot2]
Potrie, R.. Partial hyperbolic diffeomorphisms with a trapping property. Discrete Contin. Dyn. Syst.
35(10) (2015), 5037–5054.
[PujS]
Pujals, E. and Sambarino, M.. On the dynamics of dominated splittings. Ann. of Math. (2)
169 (2009), 675–740.
[PuSh]
Pugh, C. and Shub, M.. Stable ergodicity. Bull. Amer. Math. Soc.
41 (2004), 1–41.
[RHRHU1]
Hertz, M. A. R., Hertz, F. R. and Ures, R.. A survey on partially hyperbolic systems. Partially Hyperbolic Dynamics, Laminations and Teichmüller Flow
(Fields Institute Communications, 51)
. Eds. Forni, G., Lyubich, M., Pugh, C. and Shub, M.. American Mathematical Society, Providence, RI, 2007, pp. 35–87.
[RHRHU2]
Hertz, M. A. R., Hertz, F. R. and Ures, R.. Tori with hyperbolic dynamics in 3-manifolds. J. Mod. Dyn.
51 (2011), 185–202.
[RHRHU3]
Hertz, M. A. R., Hertz, F. R. and Ures, R.. A non dynamically coherent example in
$\mathbb{T}^{3}$
. Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Preprint 2014, arXiv:1409.0738.
[RSS]
Roberts, R., Shareshian, J. and Stein, M.. Infinitely many hyperbolic 3-manifolds which contain no Reebless foliations. J. Amer. Math. Soc.
16 (2003), 639–679.
[RuS]
Ruelle, D. and Sullivan, D.. Currents, flows and diffeomorphisms. Topology
14(4) (1975), 319–327.
[Sa]
Sadovskaya, V.. On uniformly quasiconformal Anosov systems. Math. Res. Lett.
12 (2005), 425–441.
[So]
Solodov, V. V.. Components of topological foliations. Math. USSR Sbornik
47 (1984), 329–343.
[Su]
Sullivan, D.. A counterexample to the periodic orbit conjecture. Publ. Math. Inst. Hautes Études Sci.
46(1) (1976), 5–14.
[Ve]
Verjovsky, A.. Codimension one Anosov flows. Bol. Soc. Mat. Mexicana (3)
19(2) (1974), 49–77.
[Wi]
Wilkinson, A.. Conservative partially hyperbolic dynamics. Preprint, 2010, arXiv:1004.5345, Expository paper for the ICM 2010 Proceedings.