Hostname: page-component-cb9f654ff-w5vf4 Total loading time: 0 Render date: 2025-09-09T05:04:47.340Z Has data issue: false hasContentIssue false

Quenched decay of correlations for random contracting Lorenz maps

Published online by Cambridge University Press:  09 September 2025

ANDREW LARKIN
Affiliation:
Department of Mathematical Sciences, https://ror.org/04vg4w365Loughborough University , Loughborough, Leicestershire LE11 3TU, UK (e-mail: a.larkin2@lboro.ac.uk)
MARKS BOTIRBOYEVICH RUZIBOEV*
Affiliation:
V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 9, University Street, Tashkent 100174, Uzbekistan Faculty of Mathematics, https://ror.org/03prydq77University of Vienna , Oskar Morgensternplatz 1, 1090 Vienna, Austria

Abstract

In this work, we study rates of mixing for small independent and identically distributed random perturbations of contracting Lorenz maps sufficiently close to a Rovella parameter. By using a random Young tower construction, we prove that this random system has exponential decay of correlations.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Afraimovich, V. S., Bykov, V. V. and Sil’nikov, L. P.. The origin and structure of the Lorenz attractor. Dokl. Akad. Nauk SSSR 234(2) (1977), 336339.Google Scholar
Alves, J. F.. SRB measures for non-hyperbolic systems with multidimensional expansion. Ann. Sci. Éc. Norm. Supér. (4) 33(1) (2000), 132.CrossRefGoogle Scholar
Alves, J. F.. Nonuniformly Hyperbolic Attractors Geometric and Probabilistic Aspects. Springer, Cham, 2020, pp. xi+259.CrossRefGoogle Scholar
Alves, J. F., Bahsoun, W. and Ruziboev, M.. Almost sure rates of mixing for partially hyperbolic attractors. J. Differential Equations 311 (2022), 98157.CrossRefGoogle Scholar
Alves, J. F., Bahsoun, W., Ruziboev, M. and Varandas, P.. Quenched decay of correlations for nonuniformly hyperbolic random maps with an ergodic driving system. Nonlinearity 36 (2023), 32943318.10.1088/1361-6544/acd220CrossRefGoogle Scholar
Alves, J. F. and Khan, M. A.. Statistical instability for contracting Lorenz flows. Nonlinearity 32(11) (2019), 44134444.10.1088/1361-6544/ab2f48CrossRefGoogle Scholar
Alves, J. F. and Soufi, M.. Statistical stability and limit laws for Rovella maps. Nonlinearity 25 (2012), 35273552.CrossRefGoogle Scholar
Alves, J. F. and Soufi, M.. Statistical stability of geometric Lorenz attractors. Fundam. Math. 224(3) (2014), 219231.CrossRefGoogle Scholar
Araújo, V. and Melbourne, I.. Exponential decay of correlations for nonuniformly hyperbolic flows with a ${\textit{C}}^{1+\unicode{x3b1}}$ stable foliation, including the classical Lorenz attractor. Ann. Henri Poincaré 17(11) (2016), 29753004.10.1007/s00023-016-0482-9CrossRefGoogle Scholar
Araújo, V., Melbourne, I. and Varandas, P.. Rapid mixing for the Lorenz attractor and statistical limit laws for their time-1 maps. Comm. Math. Phys. 340(3) (2015), 901938.10.1007/s00220-015-2471-0CrossRefGoogle Scholar
Araújo, V., Pacífico, M. J., Pujals, E. R. and Viana, M.. Singular-hyperbolic attractors are chaotic. Trans. Amer. Math. Soc. 361(5) (2009), 24312485.CrossRefGoogle Scholar
Bahsoun, W., Bose, C. and Ruziboev, M.. Quenched decay of correlations for slowly mixing systems. Trans. Amer. Math. Soc. 372(9) (2019), 65476587.10.1090/tran/7811CrossRefGoogle Scholar
Bahsoun, W., Melbourne, I. and Ruziboev, M.. Variance continuity for Lorenz flows. Ann. Henri Poincaré 21 (2020), 18731892.10.1007/s00023-020-00913-5CrossRefGoogle ScholarPubMed
Bahsoun, W. and Ruziboev, M.. On the statistical stability of Lorenz attractors with a ${\textit{C}}^{1+\unicode{x3b1}}$ stable foliation. Ergod. Th. & Dynam. Sys. 39(12) (2019), 31693184.10.1017/etds.2018.28CrossRefGoogle Scholar
Baladi, V., Benedicks, M. and Maume-Deschamps, V.. Almost sure rates of mixing for i.i.d. unimodal maps. Ann. Sci. Éc. Norm. Supér. (4) 35(1) (2002), 77126.CrossRefGoogle Scholar
Bruin, H., Luzzatto, S. and van Strien, S.. Decay of correlations in one-dimensional dynamics. Ann. Sci. Éc. Norm. Supér. (4) 36(4) (2003), 621646.CrossRefGoogle Scholar
Bruin, H., Rivera-Letelier, J., Shen, W. and van Strien, S.. Large derivatives, backward contraction and invariant densities for interval maps. Invent. Math. 172 (2008), 509533.10.1007/s00222-007-0108-4CrossRefGoogle Scholar
Buzzi, J.. Exponential decay of correlations for random Lasota–Yorke maps. Comm. Math. Phys. 208 (1999), 2554.CrossRefGoogle Scholar
Díaz-Ordaz, K.. Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps. Discrete Contin. Dyn. Syst. Ser. A 15(1) (2006), 159176.10.3934/dcds.2006.15.159CrossRefGoogle Scholar
Dragičević, D., Froyland, G., González-Tokman, C. and Vaienti, S.. A spectral approach for quenched limit theorems for random expanding dynamical systems. Comm. Math. Phys. 360(3) (2018), 11211187.CrossRefGoogle Scholar
Dragičević, D., Froyland, G., González-Tokman, C. and Vaienti, S.. A spectral approach for quenched limit theorems for random hyperbolic dynamical systems. Trans. Amer. Math. Soc. 373(1) (2020), 629664.10.1090/tran/7943CrossRefGoogle Scholar
Dragičević, D. and Hafouta, Y.. Limit theorems for random expanding or Anosov dynamical systems and vector-valued observables. Ann. Henri Poincaré 21 (2020), 38693917.CrossRefGoogle Scholar
Dragičević, D. and Sedro, J.. Statistical stability and linear response for random hyperbolic dynamics. Ergod. Th. & Dynam. Sys. 43(2) (2023), 515544.10.1017/etds.2021.153CrossRefGoogle Scholar
Du, Z.. On mixing rates for random perturbations. PhD Thesis, National University of Singapore, 2015.Google Scholar
Guckenheimer, J. and Williams, R. F.. Structural stability of Lorenz attractors. Publ. Math. Inst. Hautes Études Sci. 50 (1979), 5972.10.1007/BF02684769CrossRefGoogle Scholar
Holland, M. and Melbourne, I.. Central limit theorems and invariance principles for Lorenz attractors. J. Lond. Math. Soc. (2) 76(2) (2007), 345364.CrossRefGoogle Scholar
Larkin, A.. Quenched decay of correlations for one-dimensional random Lorenz maps. J. Dyn. Control Syst. 29 (2023), 185207.CrossRefGoogle Scholar
Li, X. and Vilarinho, H.. Almost sure mixing rates for non-uniformly expanding maps. Stoch. Dyn. 18(4) (2018), 1850027.10.1142/S0219493718500272CrossRefGoogle Scholar
Lorenz, E. D.. Deterministic nonperiodic flow. J. Atmosph. Sci. 20 (1963), 130141.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Luzzatto, S., Melbourne, I. and Paccaut, F.. The Lorenz attractor is mixing. Comm. Math. Phys. 260(2) (2005), 393401.CrossRefGoogle Scholar
Metzger, R. J.. Stochastic stability for contracting Lorenz maps and flows. Comm. Math. Phys. 212 (2000), 277296.10.1007/s002200000220CrossRefGoogle Scholar
Metzger, R. J.. Sinai–Ruelle–Bowen measures for contracting Lorenz maps and flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(2) (2000), 247276.10.1016/s0294-1449(00)00111-6CrossRefGoogle Scholar
Pacifico, M. J. and Todd, M.. Thermodynamic formalism for contracting Lorenz flows. J. Stat. Phys. 139 (2010), 159176.CrossRefGoogle Scholar
Pliss, V.. On a conjecture due to Smale. Differ. Uravn. 7 (1972), 906927.Google Scholar
Rovella, A.. The dynamics of perturbations of the contracting Lorenz attractor. Bol. Soc. Bras. Mat. 24 (1993), 233259.10.1007/BF01237679CrossRefGoogle Scholar
Shen, W.. On stochastic stability of non-uniformly expanding interval maps. Proc. Lond. Math. Soc. (3) 107 (2013), 10911134.10.1112/plms/pdt013CrossRefGoogle Scholar
Tucker, W.. The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I. Math. 328 (1999), 11971202.CrossRefGoogle Scholar
Tucker, W.. A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2 (2002), 53117.CrossRefGoogle Scholar
Young, L. S.. Recurrence times and rates of mixing. Israel J. Math. 110 (1999), 153188.10.1007/BF02808180CrossRefGoogle Scholar