Skip to main content
×
×
Home

Sets of large values of correlation functions for polynomial cubic configurations

  • V. BERGELSON (a1) and A. LEIBMAN (a1)
Abstract

We prove that for any set $E\subseteq \mathbb{Z}$ with upper Banach density $d^{\ast }(E)>0$ , the set ‘of cubic configurations’ in $E$ is large in the following sense: for any $k\in \mathbb{N}$ and any $\unicode[STIX]{x1D700}>0$ , the set

$$\begin{eqnarray}\displaystyle \biggl\{(n_{1},\ldots ,n_{k})\in \mathbb{Z}^{k}:d^{\ast }\biggl(\mathop{\bigcap }_{e_{1},\ldots ,e_{k}\in \{0,1\}}(E-(e_{1}n_{1}+\cdots +e_{k}n_{k}))\biggr)>d^{\ast }(E)^{2^{k}}-\unicode[STIX]{x1D700}\biggr\} & & \displaystyle \nonumber\end{eqnarray}$$
is an $\text{AVIP}_{0}^{\ast }$ -set. We then generalize this result to the case of ‘polynomial cubic configurations’ $e_{1}p_{1}(n)+\cdots +e_{k}p_{k}(n)$ , where the polynomials $p_{i}:\mathbb{Z}^{d}\longrightarrow \mathbb{Z}$ are assumed to be sufficiently algebraically independent.

Copyright
References
Hide All
[AGH] Auslander, L., Green, L. and Hahn, F.. Flows on Homogeneous Spaces (Annals of Mathematics Studies, 53) . Princeton University Press, Princeton, NJ, 1963.
[B1] Bergelson, V.. Ergodic Ramsey theory—An Update, Ergodic Theory of ℤ d -Actions (London Mathematical Society Lecture Note Series, 228) . Cambridge University Press, Cambridge, 1996, pp. 161.
[B2] Bergelson, V.. The multifarious Poincaré recurrence theorem. Descriptive Set Theory and Dynamical Systems (London Mathematical Society Lecture Note Series, 277) . Cambridge University Press, Cambridge, 2000, pp. 3157.
[B3] Bergelson, V.. Minimal idempotents and ergodic Ramsey theory. Topics in Dynamics and Ergodic Theory (London Mathematical Society Lecture Note Series, 310) . Cambridge University Press, Cambridge, 2003, pp. 839.
[B4] Bergelson, V.. Ergodic Ramsey Theory (Contemporary Mathematics, 65) . American Mathematical Society, Providence, RI, 1987, pp. 6387.
[BD] Bergelson, V. and Downarowicz, T.. Large sets of integers and hierarchy of mixing properties of measure preserving systems. Colloq. Math. 110(1) (2008), 117150.
[BFM] Bergelson, V., Furstenberg, H. and McCutcheon, R.. IP-sets and polynomial recurrence. Ergod. Th. & Dynam. Sys. 16 (1996), 963974.
[BFW] Bergelson, V., Furstenberg, H. and Weiss, B.. Piecewise-Bohr sets of integers and combinatorial number theory. Topics in Discrete Mathematics (Algorithms and Combinatorics, 26) . Springer, Berlin, 2006, pp. 1337.
[BHoK] Bergelson, V., Host, B. and Kra, B.. Multiple recurrence and nilsequences., With an appendix by I. Ruzsa. Invent. Math. 160(2) (2005), 261303.
[BL1] Bergelson, V. and Leibman, A.. Set-polynomials and polynomial extension of the Hales–Jewett theorem. Ann. of Math. (2) 150 (1999), 3375.
[BL2] Bergelson, V. and Leibman, A.. Cubic averages and large intersections. Contemp. Math. 631 (2015), 520.
[BL3] Bergelson, V. and Leibman, A.. IP -recurrence and nilsystems. Preprint, 2016, arXiv:1604.02489.
[BLLe1] Bergelson, V., Leibman, A. and Lesigne, E.. Weyl complexity of a system of polynomials, and constructions in combinatorial number theory. J. Anal. Math. 103 (2007), 4792.
[BLLe2] Bergelson, V., Leibman, A. and Lesigne, E.. Intersective polynomials and the polynomial Szemerédi theorem. Adv. Math. 219 (2008), 369388.
[BM1] Bergelson, V. and McCutcheon, R.. Central sets and a non-commutative Roth theorem. Amer. J. Math. 129(5) (2007), 12511275.
[BM2] Bergelson, V. and McCutcheon, R.. Idempotent ultrafilters, multiple weak mixing and Szemerédi’s theorem for generalized polynomials. J. Anal. Math. 111 (2010), 77130.
[F] Frantzikinakis, N.. Multiple correlation sequences and nilsequences. Invent. Math. 202 (2015), 875892.
[FK] Frantzikinakis, N. and Kra, B.. Polynomial averages converge to the product of integrals. Israel J. Math. 148 (2005), 267276.
[Fu] Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, NJ, 1981.
[FuW] Furstenberg, H. and Weiss, B.. Topological dynamics and combinatorial number theory. J. D’Anal. Math. 34 (1978), 6185.
[G] Gillis, J.. Note on a property of measurable sets. J. Lond. Math. Soc. (2) 11(2) (1936), 139141.
[H] Hindman, N.. Finite sums from sequences within cells of a partition of ℕ. J. Combin. Theory Ser. A 17 (1974), 111.
[HoK1] Host, B. and Kra, B.. Averaging along cubes. Modern Dynamical Systems and Applications. Cambridge University Press, Cambridge, 2004, pp. 123144.
[HoK2] Host, B. and Kra, B.. Non-conventional ergodic averages and nilmanifolds. Ann. of Math. (2) 161(1) (2005), 397488.
[HoK3] Host, B. and Kra, B.. Nil–Bohr sets of integers. Ergod. Th. & Dynam. Sys. 31 (2011), 113142.
[HoKM] Host, B., Kra, B. and Maass, A.. Complexity of nilsystems and systems lacking nilfactors. J. Anal. Math. 124 (2014), 261295.
[Ke1] Keynes, H. B.. Topological dynamics in coset transformation groups. Bull. Amer. Math. Soc. (N.S.) 72 (1966), 10331035.
[Ke2] Keynes, H. B.. A study of the proximal relation in coset transformation groups. Trans. Amer. Math. Soc. 128 (1967), 389402.
[Kh] Khintchine, A. Y.. Eine Verschärfung des Poincaréschen ‘Wiederkehrsatzes’. Comput. Math. 1 (1934), 177179.
[L1] Leibman, A.. Pointwise convergence of ergodic averages, for polynomial sequences of translations on a nilmanifold. Ergod. Th. & Dynam. Sys. 25 (2005), 201213.
[L2] Leibman, A.. Pointwise convergence of ergodic averages, for polynomial actions of ℤ d by translations on a nilmanifold. Ergod. Th. & Dynam. Sys. 25 (2005), 215225.
[L3] Leibman, A.. Convergence of multiple ergodic averages along polynomials of several variables. Israel J. Math. 146 (2005), 303315.
[L4] Leibman, A.. Rational sub-nilmanifolds of a compact nilmanifold. Ergod. Th. & Dynam. Sys. 26 (2006), 787798.
[L5] Leibman, A.. Orbits on a nilmanifold under the action of a polynomial sequence of translations. Ergod. Th. & Dynam. Sys. 27 (2007), 12391252.
[L6] Leibman, A.. Orbit of the diagonal in the power of a nilmanifold. Trans. Amer. Math. Soc. 362 (2010), 16191658.
[L7] Leibman, A.. Nilsequences, nul-sequences, and the multiple correlation sequences. Ergod. Th. & Dynam. Sys. 31 (2015), 176191.
[M] McCutcheon, R.. Private communications, 2015.
[MZ] McCutcheon, R. and Zhou, J.. D sets and IP rich sets in ℤ. Fund. Math. 233 (2016), 7182.
[Zi] Ziegler, T.. Universal characteristic factors and Furstenberg averages. J. Amer. Math. Soc. 20 (2007), 5397.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed