[1]Alikakos, N. (1979) An application of the invariance principle to reaction-diffusion equations. J. Differ. Equations 33, 201–225.

[2]Allen, L. J. S., Bolker, B. M., Lou, Y. & Nevai, A. L. (2007) Asymptotic profiles of the steady states for an SIS epidemic disease patch model. SIAM J. Appl. Math. 67, 1283–1309.

[3]Allen, L. J. S., Bolker, B. M., Lou, Y. & Nevai, A. L. (2008) Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin. Dyn. Syst. 21, 1–20.

[4]Bellomo, N., Bellouquid, A., Tao, Y. & Winkler, M. (2015) Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763.

[5]Brown, K. J., Dunne, P. C. & Gardner, R. A. (1981) A semilinear parabolic system arising in the theory of superconductivity. J. Differ. Equations 40, 232–252.

[6]Cao, X. (2015) Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35, 1891–1904.

[7]Cieślak, T., Laurencot, Ph. & Morales-Rodrigo, C. (2008) Global existence and convergence to steady states in a chemorepulsion system, equations, in parabolic and Navier–Stokes equations. Banach Center Publ. Polish Acad. Sci. Inst. Math. 81, 105–117.

[8]Cui, J., Tao, X. & Zhu, H. (2008) An SIS infection model incorporating media coverage. Rocky Mount. J. Math. 38, 1323–1334.

[9]Cui, R., Lam, K.-Y. & Lou, Y. (2017) Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ. Equations 263, 2343–2373.

[10]Cui, R. & Lou, Y. (2016) A spatial SIS model in advective heterogeneous environments. J. Diff. Equations 261, 3305–3343.

[11]Deng, K. & Wu, Y. (2016) Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model. Proc. Roy. Soc. Edinb. Sect. A 146, 929–946.

[12]Ding, W., Huang, W. & Kansakar, S. (2013) Traveling wave solutions for a diffusive SIS epidemic model. Discrete Contin. Dyn. Syst. Ser. B 18, 1291–1304.

[13]Du, Y., Peng, R. & Wang, M. (2009) Effect of a protection zone in the diffusive Leslie predator-prey model. J. Differ. Equations 246, 3932–3956.

[14]Friedman, A. (1964) Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ, xiv+347 pp.

[15]Gao, D. & Ruan, S. (2011) An SIS patch model with variable transmission coefficients. Math. Biosci. 232, 110–115.

[16]Ge, J., Kim, K. I., Lin, Z. & Zhu, H. (2015) A SIS reaction-diffusion-advection model in a low-risk and high-risk domain. J. Differ. Equations 259, 5486–5509.

[17]Horstmann, D. & Winkler, M. (2005) Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equations 215, 52–107.

[18]Huang, W., Han, M. & Liu, K. (2010) Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Math. Biosci. Eng. 7, 51–66.

[19]Hutson, V., Lou, Y. & Mischaikow, K. (2005) Convergence in competition models with small diffusion coefficients. J. Differ. Equations 211, 135–161.

[20]Jäger, W. & Luckhaus, S. (1992) On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 329, 819–824.

[21]Jin, H.-Y. & Xiang, T. (2016) Boundedness and exponential convergence in a chemotaxis model for tumor invasion. Nonlinearity 29, 3579–3596.

[22]Kuto, K., Matsuzawa, H. & Peng, R. (2017) Concentration profile of endemic equilibrium of a reaction-diffusion-advection SIS epidemic model. Calc. Var. Partial Differ. Equations 56(4), Art. 112, 1–28.

[23]Ladyzhenskaya, O., Solonnikov, V. & Uralceva, N. (1968) Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, RI.

[24]Li, H., Peng, R. & Wang, F.-B. (2017) Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equations 262, 885–913.

[25]Li, T., Pan, R. & Zhao, K. (2012) Global dynamics of a hyperbolic-parabolic model arising from chemotaxis. SIAM J. Appl. Math. 72, 417–443.

[26]Lou, Y. & Ni, W.-M. (1996) Diffusion, self-diffusion and cross-diffusion. J. Differ. Equations 131, 79–131.

[27]Magal, P. & Zhao, X.-Q. (2005) Global attractors and steady states for uniformly persistent dynamical systems. SIAM. J. Math. Anal. 37, 251–275.

[28]Peng, R. (2009) Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. I. J. Differ. Equations 247, 1096–1119.

[29]Peng, R. & Liu, S. (2009) Global stability of the steady states of an SIS epidemic reaction-diffusion model. Nonlinear Anal. 71, 239–247.

[30]Peng, R. & Yi, F. (2013) Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement. Phys. D 259, 8–25.

[31]Peng, R. & Zhao, X.-Q. (2012) A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471.

[32]Porzio, M. M. & Vespri, V. (1993) Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equations 103, 146–178.

[33]Tao, Y. (2013) Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete Contin. Dyn. Syst. Ser. B 18, 2705–2722.

[34]Tao, Y. & Wang, Z.-A. (2013) Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23, 1–36.

[35]Tao, Y. & Winkler, M. (2012) Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equations 252, 2520–2543.

[36]Winkler, M. (2010) Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equations 248, 2889–2905.

[37]Winkler, M. (2010) Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Comm. Partial Differ. Equations 35, 1516–1537.

[38]Winkler, M. (2011) Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272.

[39]Winkler, M. (2013) Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748–767.

[40]Winkler, M. (2014) Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch. Ration. Mech. Anal. 211, 455–487.

[41]Wu, Y. & Zou, X. (2016) Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Differ. Equations 261, 4424–4447.

[42]Zhao, X. (2017) Dynamical Systems in Population Biology, second edition, Springer-Verlag, New York.