We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The bootComb R package allows researchers to derive confidence intervals with correct target coverage for arbitrary combinations of arbitrary numbers of independently estimated parameters. Previous versions (<1.1.0) of bootComb used independent bootstrap sampling and required that the parameters themselves are independent—an unrealistic assumption in some real-world applications.
Findings
Using Gaussian copulas to define the dependence between parameters, the bootComb package has been extended to allow for dependent parameters.
Implications
The updated bootComb package can now handle cases of dependent parameters, with users specifying a correlation matrix defining the dependence structure. While in practice it may be difficult to know the exact dependence structure between parameters, bootComb allows running sensitivity analyses to assess the impact of parameter dependence on the resulting confidence interval for the combined parameter.