Skip to main content Accessibility help


  • DIRK SCHÜTZ (a1)


We use the divide-and-conquer and scanning algorithms for calculating Khovanov cohomology directly on the Lee- or Bar-Natan deformations of the Khovanov complex to give an alternative way to compute Rasmussen s-invariants of knots. By disregarding generators away from homological degree 0, we can considerably improve the efficiency of the algorithm. With a slight modification, we can also apply it to a refinement of Lipshitz–Sarkar.



Hide All
1.Bar-Natan, D., Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005), 14431499.
2.Bar-Natan, D., Fast Khovanov homology computations, J. Knot Theory Ramifications 16(3) (2007), 243255.
3.Bar-Natan, D. and Morrison, S., The Karoubi envelope and Lee’s degeneration of Khovanov homology, Algebr. Geom. Topol. 6 (2006), 14591469.
4.Freedman, M., Gompf, R., Morrison, S. and Walker, K., Man and machine thinking about the smooth 4-dimensional Poincaré conjecture, Quantum Topol. 1(2) (2010), 171208.
5.Friedl, S. and Teichner, P., New topologically slice knots, Geom. Topol. 9 (2005), 21292158.
6.Khovanov, M., A categorification of the Jones polynomial, Duke Math. J. 101(3) (2000), 359426.
7.Lee, E. S., An endomorphism of the Khovanov invariant, Adv. Math. 197(2) (2005), 554586.
8.Lobb, A., Computable bounds for Rasmussen’s concordance invariant, Compos. Math. 147(2) (2011), 661668.
9.Lobb, A., Orson, P. and Schütz, D., A calculus for flow categories, arXiv e-prints 1710.01798 (2017).
10.Lobb, A., Orson, P. and Schütz, D., Framed cobordism and flow category moves, Algebr. Geom. Topol. 18(5) (2018), 28212858.
11.Lobb, A., Orson, P. and Schütz, D., Khovanov homotopy calculations using flow category calculus, arXiv e-prints 1710.01857, Exp. Math. (to appear).
12.Lipshitz, R. and Sarkar, S., A Khovanov stable homotopy type, J. Amer. Math. Soc. 27(4) (2014), 9831042.
13.Lipshitz, R. and Sarkar, S., A refinement of Rasmussen’s S-invariant, Duke Math. J. 163(5) (2014), 923952.
14.Manolescu, C. and Ozsváth, P., On the Khovanov and knot Floer homologies of quasi-alternating links, in Proceedings of Gökova Geometry-Topology Conference 2007, Gökova Geometry/Topology Conference (GGT), Gökova (2008), 6081.
15.Mackaay, M., Turner, P. and Vaz, P., A remark on Rasmussen’s invariant of knots, J. Knot Theory Ramifications 16(3) (2007), 333344.
16.Piccirillo, L., Shake genus and slice genus, Geom. Topol. 23(5) (2019), 26652684.
17.Rasmussen, J., Khovanov homology and the slice genus, Invent. Math. 182(2) (2010), 419447.
18.Schütz, D., SKnotJob, Software (2018). Available at{~}dma0ds/{knotjob.html}.
19.Sarkar, S., Seed, C. and Szabó, Z., A perturbation of the geometric spectral sequence in Khovanov homology, Quantum Topol. 8(3) (2017), 571628.
20.Turner, P. R., Calculating Bar-Natan’s characteristic two Khovanov homology, J. Knot Theory Ramifications 15(10) (2006), 13351356.

MSC classification


  • DIRK SCHÜTZ (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.