Skip to main content Accessibility help
×
Home

Dynamic stabilization of plasma instability

  • S. Kawata (a1), T. Karino (a1) and Y. J. Gu (a2) (a3)

Abstract

The paper presents a review of dynamic stabilization mechanisms for plasma instabilities. One of the dynamic stabilization mechanisms for plasma instability was proposed in the paper [Kawata, Phys. Plasmas 19, 024503 (2012)], based on a perturbation phase control. In general, instabilities emerge from the perturbations. Normally the perturbation phase is unknown, and so the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superimposition of perturbations imposed actively. Based on this mechanism we present the application results of the dynamic stabilization mechanism to the Rayleigh–Taylor instability (RTI) and to the filamentation instability as typical examples in this paper. On the other hand, in the paper [Boris, Comments Plasma Phys. Control. Fusion 3, 1 (1977)] another mechanism was proposed to stabilize RTI, and was realized by the pulse train or the laser intensity modulation in laser inertial fusion [Betti et al., Phys. Rev. Lett. 71, 3131 (1993)]. In this latter mechanism, an oscillating strong force is applied to modify the basic equation, and consequently the new stabilization window is created. Originally the latter was proposed by Kapitza. We review the two stabilization mechanisms, and present the application results of the former dynamic stabilization mechanism.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dynamic stabilization of plasma instability
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dynamic stabilization of plasma instability
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dynamic stabilization of plasma instability
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: S. Kawata, Graduate School of Engineering, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya 321-8585, Japan. Email: kwt@cc.utsunomiya-u.ac.jp

References

Hide All
1. Wolf, G. H. Phys. Rev. Lett. 24, 444 (1970).
2. Troyon, F. and Gruber, R. Phys. Fluids 14, 2069 (1971).
3. Boris, J. P. Comments Plasma Phys. Control. Fusion 3, 1 (1977).
4. Betti, R. McCrory, R. L. and Verdon, C. P. Phys. Rev. Lett. 71, 3131 (1993).
5. Piriz, A. R. Prieto, G. R. Diaz, I. M. and Cela, J. J. L. Phys. Rev. E 82, 026317 (2010).
6. Piriz, A. R. Piriz, S. A. and Tahir, N. A. Phys. Plasmas 18, 092705 (2011).
7. Atzeni, S. and Meyer-Ter-Vehn, J. The Physics of Inertial Fusion (Oxford Science Pub., 2004).
8. Nuckolls, J. Wood, L. Thiessen, A. and Zimmmerman, G. Nature 239, 139 (1972).
9. Emery, M. H. Orens, J. H. Gardner, J. H. and Boris, J. P. Phys. Rev. Lett. 48, 253 (1982).
10. Kawata, S. and Niu, K. J. Phys. Soc. Japan 53, 3416 (1984).
11. Kawata, S. Iizuka, Y. Kodera, Y. Ogoyski, A. I. and Kikuchi, T. Nucl. Inst. Meth. Phys. Res. A 606, 152 (2009).
12. Kawata, S. Sato, T. Teramoto, T. Bandoh, E. Masubichi, Y. Watanabe, H. and Takahashi, I. Laser Part. Beams 11, 757 (1993).
13. Bret, A. Firpo, M.-C. and Deutsch, C. Phys. Rev. Lett. 94, 115002 (2005).
14. Bret, A. Firpo, M.-C. and Deutsch, C. Phys. Rev. E 70, 046401 (2004).
15. Okada, T. and Niu, K. J. Phys. Soc. Japan 50, 3845 (1981).
16. Okada, T. and Niu, K. J. Plasma Phys. 24, 483 (1980).
17. Hubbard, R. F. and Tidman, D. A. Phys. Rev. Lett. 41, 866 (1978).
18. Qin, H. Davidson, R. C. and Logan, B. G. Phys. Rev. Lett. 104, 254801 (2010).
19. Arnold, R. C. Colton, E. Fenster, S. Foss, M. Magelssen, G. and Moretti, A. Nucl. Inst. Meth. 199, 557 (1982).
20. Kawata, S. Karino, T. and Ogoyski, A. I. Matter Radiat. Extremes 1, 89 (2016).
21. Kapitza, P. L. Soviet Phys. JETP 21, 588 (1951).
22. Kawata, S. Phys. Plasmas 19, 024503 (2012).
23. Kawata, S. Gu, Y. J. Li, X. F. Karino, T. Katoh, H. Limpouch, J. Klimo, O. Margarone, D. Yu, Q. Kong, Q. Weber, S. Bulanov, S. and Andreev, A. Phys. Plasmas 25, 011601 (2018).
24. Olver, F. W. Lozier, D. W. Boisvert, R. F. and Clark, C. W. NIST Handbook of Mathematical Functions (Cambridge University Press, New York, 2010).
25. Collins, T. J. B. and Skupsky, S. Phys. Plasmas 9, 275 (2002).
26. Goncharov, V. N. Knauer, J. P. McKenty, P. W. Radha, P. B. Sangster, T. C. Skupsky, S. Betti, R. McCrory, R. L. and Meyerhofer, D. D. Phys. Plasmas 10, 1906 (2003).
27. Qing, H. and Davidson, R. C. Phys. Plasmas 21, 064505 (2014).
28. Sharkov, B. Y. Hoffmann, D. H. H. Golubev, A. A. and Zhao, Y. Matter Radiat. Extremes 1, 28 (2016).
29. Kawata, S. and Karino, T. Phys. Plasmas 22, 042106 (2015).
30. Esirkepov, T. Zh. and Bulanov, S. V. Phys. Lett. A 381, 2559 (2017).
31. Blekhman, I. I. Vibrational Mechanics (World Scientific Publishing, Singapore, 2000).
32. Krechetnikov, R. and Marsden, J. E. Rev. Mod. Phys. 79, 519 (2007).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed