Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-15T20:46:14.822Z Has data issue: false hasContentIssue false

Ageing and burst of surface bubbles

Published online by Cambridge University Press:  30 July 2018

S. Poulain
The Fluid Dynamics of Disease Transmission Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
E. Villermaux
Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, 13384 Marseille, France Institut Universitaire de France, Paris, France
L. Bourouiba*
The Fluid Dynamics of Disease Transmission Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Email address for correspondence:


Upon burst, surface bubbles transfer biological and chemical material from water bodies to the air we breathe via the production of droplets. An understanding of what shapes the size and payload of such droplets starts by understanding the fundamental physics of bubble birth, drainage and burst. Our combined experimental and theoretical investigation focuses on film-drop-producing surface bubbles. Controlling fluid properties such as temperature, salinity and volatility, coupled with changes of ambient air saturation, we elucidate the ageing and lifetime of bubbles. We derive and validate a generalized bubble cap drainage model accounting for both curvature-pressure-induced drainage and Marangoni flows induced by the coupling between the bubble and its surrounding air. We show that this deterministic drainage is coupled with stochastic local perturbations, both intrinsic and extrinsic, from impacts by mist droplets to microbubbles. We derive the conditions for such perturbations to be lethal to the cap film, involving the competition of mixing and drainage time scales on the bubble, the film thickness, the size of the perturbation and the local Marangoni stresses introduced. We explain how the mixing dynamics on the cap ensures that bursts mostly occur at the foot of bubbles rather than on their cap. Our study sheds light on the coupling between the deterministic cap thinning and the stochastic events leading to bubble death. We conclude that ubiquitous water contaminants enable the birth of a bubble, sustain it through its ageing, but ultimately also kill it.

JFM Papers
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Anguelova, M. D. & Huq, P. 2017 Effects of salinity on surface lifetime of large individual bubbles. J. Mar. Sci. Engng 5 (3), 41.Google Scholar
Bikerman, J. J. 1968 Persistence of bubbles on inorganic salt solutions. J. Appl. Chem. 18 (9), 266269.Google Scholar
Bikerman, J. J. 1973 Foams. Springer.Google Scholar
Blanchard, D. C. 1963 The electrification of the atmosphere by particles from bubbles in the sea. Prog. Oceanogr. 1 (1254), 73202.Google Scholar
Blanchard, D. C. 1989 The ejection of drops from the sea and their enrichment with bacteria and other materials: a review. Estuaries 12 (3), 127137.Google Scholar
Bourouiba, L. & Bush, J. W. M. 2013 Drops and bubbles in the environment. In Handbook of Environmental Fluid Dynamics, vol. 1, chap. 32, pp. 427439. Taylor & Francis.Google Scholar
Bruinsma, R. 1995 Theory of hydrodynamic convection in soap films. Physica A 216, 5976.Google Scholar
Burger, S. R. & Blanchard, D. C. 1983 The persistence of air bubbles at a seawater surface. J. Geophys. Res. 88 (C12), 77247726.Google Scholar
Carey, V. P. 2007 Liquid Vapor Phase Change Phenomena, 2nd edn. Taylor & Francis.Google Scholar
Champougny, L., Roche, M., Drenckhan, W. & Rio, E. 2016 Life and death of not so ‘bare’ bubbles. Soft Matt. 12, 52765284.Google Scholar
Constable, F. H. & Baykut, S. 1952 The life of single bubbles on water. I. Ü. Fen Fak. Mec. A17, 309321.Google Scholar
Couder, Y., Chomaz, J. M. & Rabaud, M. 1989 On the hydrodynamics of soap films. Physica D 37 (1–3), 384405.Google Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31 (6), 11281129.Google Scholar
Deane, G. B. & Stokes, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839844.Google Scholar
Garrett, W. D. 1967 Stabilization of air bubbles at the air–sea interface by surface-active material. Deep-Sea Res. Oceanogr. Abstr. 14 (6), 661672.Google Scholar
de Gennes, P.-G. 1998 Progression d’un agent de coalescence dans une emulsion. C. R. Acad. Sci. II B 326 (5), 331335.Google Scholar
Gleim, V. G., Shelmov, I. K. & Shidlovskii, B. R. 1959 Stability of electrolyte foams. Zh. Prikl. Khim. 32, 1046.Google Scholar
Gluhosky, P. A.1983 An investigation of bubble surface life and top drop ejection height for large bubbles, 1–8 mm diameter. Master’s thesis, State University of New York, Albany.Google Scholar
Hardy, W. 1925 Chemistry at interfaces. J. Chem. Soc. Trans. 127, 12071227.Google Scholar
Huppert, H. E. & Turner, J. S. 1981 Double-diffusive convection. J. Fluid Mech. 106, 299329.Google Scholar
Israelachvili, J. N. 2011 Intermolecular and Surface Forces, 3rd edn. Academic.Google Scholar
Knelman, F., Dombrowski, N. & Newitt, D. M. 1954 Mechanism of the bursting of bubbles. Nature 173, 261.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
de Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E. R., O’Dowd, C., Schulz, M. & Schwartz, S. E. 2011 Production flux of sea spray aerosol. Rev. Geophys. 49 (2), 2010RG000349.Google Scholar
Lévêque, M. A. 1928 Les lois de la transmission de la chaleur par convection. Ann. Mines 13, 201412.Google Scholar
Lewis, E. R. & Schwartz, S. E. 2004 Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models – A Critical Review, vol. 152. American Geophysical Union.Google Scholar
Lhuissier, H. & Villermaux, E. 2012 Bursting bubble aerosols. J. Fluid Mech. 696, 544.Google Scholar
Modini, R. L., Russell, L. M., Deane, G. B. & Stokes, M. D. 2013 Effect of soluble surfactant on bubble persistence and bubble-produced aerosol particles. J. Geophys. Res. 118 (3), 13881400.Google Scholar
Mysels, K. J., Shinoda, K. & Frankel, S. 1959 Soap Films: Studies of Their Thinning and a Bibliography. Pergamon.Google Scholar
Néel, B. & Villermaux, E. 2018 The spontaneous puncture of thick liquid films. J. Fluid Mech. 838, 192221.Google Scholar
Nierstrasz, V. A. & Frens, G. 1998 Marginal regeneration in thin vertical liquid films. J. Colloid Interface Sci. 207 (2), 209217.Google Scholar
Ozdemir, O., Karakashev, S. I., Nguyen, A. V. & Miller, J. D. 2009 Adsorption and surface tension analysis of concentrated alkali halide brine solutions. Miner. Engng 22 (3), 263271.Google Scholar
Petit, P. C., Le Merrer, M. & Biance, A.-L. 2015 Holes and cracks in rigid foam films. J. Fluid Mech. 774, R3.Google Scholar
Plateau, J. 1873 Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Ghauthier-Villar.Google Scholar
Princen, H. M. 1963 Shape of a fluid drop at a liquid–liquid interface. J. Colloid Sci. 18, 178195.Google Scholar
Risso, R. 2018 Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50, 2548.Google Scholar
Sabadini, E., Ungarato, R. F. S. & Miranda, P. B. 2014 The elasticity of soap bubbles containing wormlike micelles. Langmuir 30 (3), 727732.Google Scholar
Spiel, D. E. 1998 On the births of film drops from bubbles bursting on seawater surfaces. J. Geophys. Res. 103 (C11), 2490724918.Google Scholar
Struthwolf, M. & Blanchard, D. C. 1984 The residence time of air bubbles < 400 μm diameter at the surface of distilled water and seawater. Tellus B 36B (4), 294299.Google Scholar
Stuhlman, O. 1932 The mechanics of effervescence. Physics 2 (6), 457466.Google Scholar
Talmud, D. & Suchowolskaju, S. 1931 Stabilität des elementaren Schaumes. Z. Phys. Chem. 154A, 277308.Google Scholar
Taylor, G. 1959 The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253 (1274), 313321.Google Scholar
Taylor, G. I. & Michael, D. H. 1973 On making holes in a sheet of fluid. J. Fluid. Mech. 58 (4), 625639.Google Scholar
Ternes, R. L. & Berg, J. C. 1984 The effect of monolayer collapse on bubble stability. J. Colloid Interface Sci. 98 (2), 471477.Google Scholar
Toba, Y. 1959 Drop production by bursting of air bubbles on the sea surface (II) Theoretical study on the shape of floating bubbles. J. Oceanogr. Soc. Japan 15 (3), 121130.Google Scholar
Trapeznikov, A. A. 1940 Effect of monolayers of insoluble substances on the stability of bubbles. Z. Phys. Chem. 14, 821837.Google Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
Vargaftik, N. B., Volkov, B. N. & Voljak, L. D. 1983 International tables of the surface tension of water. J. Phys. Chem. Ref. Data 12 (3), 817820.Google Scholar
Vernay, C., Ramos, L., Würger, A. & Ligoure, C. 2017 Playing with emulsion formulation to control the perforation of a freely expanding liquid sheet. Langmuir 33 (14), 34583467.Google Scholar
Veron, F. 2015 Ocean spray. Annu. Rev. Fluid Mech. 47, 507538.Google Scholar
Villermaux, E. 2012 On dissipation in stirred mixtures. Adv. Appl. Mech. 45, 91107.Google Scholar
Villermaux, E. & Duplat, J. 2003 Mixing as an aggregation process. Phys. Rev. Lett. 91 (18), 184501.Google Scholar
Vrij, A. 1966 Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42, 2333.Google Scholar
Walls, P. L., Bird, J. C. & Bourouiba, L. 2014 Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them. Integr. Compar. Biol. 54 (6), 10141025.Google Scholar
Wang, X., Deane, G. B., Moore, K. A., Ryder, O. S., Stokes, M. D., Beall, C. M., Collins, D. B., Santander, M. V., Burrows, S. M., Sultana, C. M. & Prather, K. A. 2017 The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles. Proc. Natl Acad. Sci. USA 114, 69786983.Google Scholar
Zheng, Q. A., Klemas, V. & Hsu, Y.-H. L. 1983 Laboratory measurement of water surface bubble life time. J. Geophys. Res. 88 (C1), 701706.Google Scholar