Hostname: page-component-59f8fd8595-fsbp6 Total loading time: 0 Render date: 2023-03-22T14:20:37.149Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

C-start: optimal start of larval fish

Published online by Cambridge University Press:  03 February 2012

M. Gazzola
Institute of Computational Science, ETH Zürich, Universitätsstrasse 6, CH-8092 Zürich, Switzerland
W. M. Van Rees
Institute of Computational Science, ETH Zürich, Universitätsstrasse 6, CH-8092 Zürich, Switzerland
P. Koumoutsakos*
Institute of Computational Science, ETH Zürich, Universitätsstrasse 6, CH-8092 Zürich, Switzerland
Email address for correspondence:


We investigate the C-start escape response of larval fish by combining flow simulations using remeshed vortex methods with an evolutionary optimization. We test the hypothesis of the optimality of C-start of larval fish by simulations of larval-shaped, two- and three-dimensional self-propelled swimmers. We optimize for the distance travelled by the swimmer during its initial bout, bounding the shape deformation based on the larval mid-line curvature values observed experimentally. The best motions identified within these bounds are in good agreement with in vivo experiments and show that C-starts do indeed maximize escape distances. Furthermore we found that motions with curvatures beyond the ones experimentally observed for larval fish may result in even larger escape distances. We analyse the flow field and find that the effectiveness of the C-start escape relies on the ability of pronounced C-bent body configurations to trap and accelerate large volumes of fluid, which in turn correlates with large accelerations of the swimmer.

Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Buche, D., Stoll, P., Dornberger, R. & Koumoutsakos, P. 2002 Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Trans. Syst. Man Cybern. C 32 (4), 460473.CrossRefGoogle Scholar
2. Budick, S. A. & O’Malley, D. M. 2000 Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J. Expl Biol. 203 (17), 25652579.Google ScholarPubMed
3. Conte, J., Modarres-Sadeghi, Y., Watts, M. N., Hover, F. S. & Triantafyllou, M. S. 2010 A fast-starting mechanical fish that accelerates at . Bioinspir. Biomim. 5 (3).CrossRefGoogle Scholar
4. Coquerelle, M. & Cottet, G. H. 2008 A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227 (21), 91219137.CrossRefGoogle Scholar
5. Domenici, P. & Blake, R. W. 1997 The kinematics and performance of fish fast-start swimming. J. Expl Biol. 200 (8), 11651178.Google ScholarPubMed
6. Epps, B. P. & Techet, A. H. 2007 Impulse generated during unsteady maneuvering of swimming fish. Exp. Fluids 43 (5), 691700.CrossRefGoogle Scholar
7. Fontaine, E., Lentink, D., Kranenbarg, S., Muller, U. K., van Leeuwen, J. L., Barr, A. H. & Burdick, J. W. 2008 Automated visual tracking for studying the ontogeny of zebrafish swimming. J. Expl Biol. 211 (8), 13051316.CrossRefGoogle ScholarPubMed
8. Gazzola, M., Chatelain, P., van Rees, W. M. & Koumoutsakos, P. 2011a Simulations of single and multiple swimmers with non-divergence free deforming geometries. J. Comput. Phys. 230 (19), 70937114.CrossRefGoogle Scholar
9. Gazzola, M., Vasilyev, O. V. & Koumoutsakos, P. 2011b Shape optimization for drag reduction in linked bodies using evolution strategies. Comput. Struct. 89 (11–12), 12241231.CrossRefGoogle Scholar
10. Haller, G. & Yuan, G. 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147 (3–4), 352370.CrossRefGoogle Scholar
11. Hansen, N., Muller, S. D. & Koumoutsakos, P. 2003 Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary Computation 11 (1), 118.CrossRefGoogle Scholar
12. Howard, C. H. 1974 Optimal strategies for predator avoidance: the relative importance of speed and manoeuvrability. J. Theor. Biol. 47 (2), 333350.Google Scholar
13. Hu, W. R., Yu, Y. L., Tong, B. G. & Liu, H. 2004 A numerical and analytical study on a tail-flapping model for fish fast c-start. Acta Mechanica Sin. 20 (1), 1623.Google Scholar
14. Katumata, Y., Muller, U. K. & Liu, H. 2009 Computation of self-propelled swimming in larva fishes. J. Biomech. Sci. Engng 4 (1), 5466.CrossRefGoogle Scholar
15. Kern, S. & Koumoutsakos, P. 2006 Simulations of optimized anguilliform swimming. J. Expl Biol. 209 (24), 48414857.CrossRefGoogle Scholar
16. Koumoutsakos, P. 1997 Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138 (2), 821857.CrossRefGoogle Scholar
17. Koumoutsakos, P. & Leonard, A. 1995 High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 138.CrossRefGoogle Scholar
18. Muller, U. K., van den Boogaart, J. G. M. & van Leeuwen, J. L. 2008 Flow patterns of larval fish: undulatory swimming in the intermediate flow regime. J. Expl Biol. 211 (2), 196205.CrossRefGoogle Scholar
19. Muller, U. K. & van Leeuwen, J. L. 2004 Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development. J. Expl Biol. 207 (5), 853868.CrossRefGoogle ScholarPubMed
20. Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N. & Engeszer, R. E. 2009 Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev. Dyn. 238 (12), 29753015.CrossRefGoogle ScholarPubMed
21. Tytell, E. D. & Lauder, G. V. 2002 The c-start escape response of polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. J. Expl Biol. 205 (17), 25912603.Google Scholar
22. Walker, J. A., Ghalambor, C. K., Griset, O. L., McKenney, D. & Reznick, D. N. 2005 Do faster starts increase the probability of evading predators? Funct. Ecol. 19 (5), 808815.CrossRefGoogle Scholar
23. Weihs, D. 1973 The mechanism of rapid starting of slender fish. Biorheology 10, 343350.Google ScholarPubMed
24. Weihs, D. & Webb, P. W. 1984 Optimal avoidance and evasion tactics in predator–prey interactions. J. Theor. Biol. 106 (2), 189206.CrossRefGoogle Scholar
25. Winckelmans, G. S. & Leonard, A. 1993 Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. J. Comput. Phys. 109, 247273.CrossRefGoogle Scholar

Gazzola et al. supplementary movie

Vorticity fields of the 2D best solution found during the optimization (blue -negative- and red -positive- vorticity ω)

Download Gazzola et al. supplementary movie(Video)
Video 886 KB
Supplementary material: PDF

Gazzola et al. supplementary material


Download Gazzola et al. supplementary material(PDF)
PDF 227 KB

Gazzola et al. supplementary movie

Vorticity fields of the 3D best solution found during the optimization (isosurfaces are based on vorticity magnitude | ω |, while the coloring blue -negative- and red -positive- is based on the z-component of ω)

Download Gazzola et al. supplementary movie(Video)
Video 5 MB