Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-599mq Total loading time: 0.587 Render date: 2022-12-07T16:44:05.174Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Oscillatory rarefied gas flow inside rectangular cavities

Published online by Cambridge University Press:  29 April 2014

Lei Wu
Affiliation:
James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
Jason M. Reese
Affiliation:
School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK
Yonghao Zhang*
Affiliation:
James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
*
Email address for correspondence: yonghao.zhang@strath.ac.uk

Abstract

Two-dimensional oscillatory lid-driven cavity flow of a rarefied gas at arbitrary oscillation frequency is investigated using the linearized Boltzmann equation. An analytical solution at high oscillation frequencies is obtained, and detailed numerical results for a wide range of gas rarefaction are presented. The influence of both the aspect ratio of the cavity and the oscillating frequency on the damping force exerted on the moving lid is studied. Surprisingly, it is found that, over a certain frequency range, the damping is smaller than that in an oscillatory Couette flow. This reduction in damping is due to the anti-resonance of the rarefied gas. A scaling law between the anti-resonant frequency and the aspect ratio is established, which would enable the control of the damping through choosing an appropriate cavity geometry.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511525.CrossRefGoogle Scholar
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flow. Oxford University Press.Google Scholar
Cercignani, C. 1990 Mathematical Methods in Kinetic Theory. Plenum.CrossRefGoogle Scholar
Desvillettes, L. & Lorenzani, S. 2012 Sound wave resonance in micro-electro-mechanical systems devices vibrating at high frequencies according to the kinetic theory of gases. Phys. Fluids 24, 092001.CrossRefGoogle Scholar
Doi, T. 2009 Numerical analysis of oscillatory Couette flow of a rarefied gas on the basis of the linearized Boltzmann equation. Vacuum 84, 734737.CrossRefGoogle Scholar
Duck, P. W. 1982 Oscillatory flow inside a square cavity. J. Fluid Mech. 122, 215234.CrossRefGoogle Scholar
Emerson, D. R., Gu, X. J., Stefanov, S. K., Sun, Y. H. & Barber, R. W. 2007 Nonplanar oscillatory shear flow: from the continuum to the free-molecular regime. Phys. Fluids 19, 107105.CrossRefGoogle Scholar
Gospodinov, P., Roussinov, V. & Stefan, S. 2012 Nonisothermal oscillatory cylindrical Couette gas–surface flow in the slip regime: a computational study. Eur. J. Mech. (B/Fluids) 33, 1424.CrossRefGoogle Scholar
Gu, X. J. & Emerson, D. R. 2011 Modeling oscillatory flows in the transition regime using a high-order moment method. Microfluid Nanofluid 10, 389401.CrossRefGoogle Scholar
Hadjiconstantinou, N. G. 2002 Sound wave propagation in transition-regime micro- and nanochannels. Phys. Fluids 14, 802809.CrossRefGoogle Scholar
Holway, L. H. 1966 New statistical models for kinetic theory: methods of construction. Phys. Fluids 9, 16581673.CrossRefGoogle Scholar
Kalempa, D. & Sharipov, F. 2009 Sound propagation through a rarefied gas confined between source and receptor at arbitrary Knudsen number and sound frequency. Phys. Fluids 21, 103601.CrossRefGoogle Scholar
Kalempa, D. & Sharipov, F. 2012 Sound propagation through a rarefied gas: influence of the gas–surface interaction. Intl J. Heat Fluid Flow 30, 190199.CrossRefGoogle Scholar
Karniadakis, G., Beskok, A. & Aluru, N. 2005 Microflows and Nanoflows: Fundamentals and Simulation. Springer.Google Scholar
Meng, J. P. & Zhang, Y. H. 2011 Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows. J. Comput. Phys. 230, 835849.CrossRefGoogle Scholar
Naris, S. & Valougeorgis, D. 2005 The driven cavity flow over the whole range of the Knudsen number. Phys. Fluids 17, 097106.CrossRefGoogle Scholar
Park, J. H., Bahukudumbi, P. & Beskok, A. 2004 Rarefaction effects on shear driven oscillatory gas flows: a direct simulation Monte Carlo study in the entire Knudsen regime. Phys. Fluids 16, 317.CrossRefGoogle Scholar
Shakhov, E. M. 1968 Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3 (5), 9596.CrossRefGoogle Scholar
Sharipov, F. & Kalempa, D. 2008a Numerical modelling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation. J. Acoust. Soc. Am. 124 (4), 19932001.CrossRefGoogle Scholar
Sharipov, F. & Kalempa, D. 2008b Oscillatory Couette flow at arbitrary oscillation frequency over the whole range of the Knudsen number. Microfluid Nanofluid 4, 363374.CrossRefGoogle Scholar
Shi, Y. & Sader, J. E. 2010 Lattice Boltzmann method for oscillatory Stokes flow with applications to micro- and nanodevices. Phys. Rev. 81, 036706.Google ScholarPubMed
Struchtrup, H. 2005 Macroscopic Transport Equations for Rarefied Gas Fows: Approximation Methods in Kinetic Theory. Springer.Google Scholar
Struchtrup, H. 2011 Resonance in rarefied gases. Contin. Mech. Thermodyn. 34, 361376.Google Scholar
Taheri, P., Rana, A. S., Torrilhon, M. & Struchtrup, H. 2009 Macroscopic description of steady and unsteady rarefaction effects in boundary value problems of gas dynamics. Contin. Mech. Thermodyn. 21, 423443.CrossRefGoogle Scholar
Tang, G. H., Gu, X. J., Barber, R. W., Emerson, D. R. & Zhang, Y. H. 2008 Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow. Phys. Rev. 78, 026706.Google Scholar
Varoutis, S., Valougeorgis, D. & Sharipov, F. 2008 Application of the integro-moment method to steady-state two-dimensional rarefied gas flows subject to boundary induced discontinuities. J. Comput. Phys. 227, 62726287.CrossRefGoogle Scholar
Wu, L., Reese, J. M. & Zhang, Y. H. 2014 Solving the Boltzmann equation by the fast spectral method: application to microflows. J. Fluid Mech. 746, 5384.CrossRefGoogle Scholar
Yap, Y. W. & Sader, J. E. 2012 High accuracy numerical solutions of the Boltzmann Bhatnagar–Gross–Krook equation for steady and oscillatory Couette flows. Phys. Fluids 24, 032004.CrossRefGoogle Scholar
30
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Oscillatory rarefied gas flow inside rectangular cavities
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Oscillatory rarefied gas flow inside rectangular cavities
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Oscillatory rarefied gas flow inside rectangular cavities
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *