Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-dfw9g Total loading time: 0.422 Render date: 2022-08-16T13:03:35.649Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Dynamically consistent entrainment laws for depth-averaged avalanche models

Published online by Cambridge University Press:  28 October 2014

Dieter Issler*
Affiliation:
Natural Hazards Division, Norwegian Geotechnical Institute, Postboks 3930 Ullevål Stadion, 0806 Oslo, Norway
*
Email address for correspondence: di@ngi.no

Abstract

The bed entrainment rate in a gravity mass flow (GMF) is uniquely determined by the properties of the bed and the flow. In depth-averaging, however, critical information on the flow variables near the bed is lost and empirical assumptions usually are made instead. We study the interplay between bed and flow assuming a perfectly brittle bed, characterized by its shear strength ${\it\tau}_{c}$, and erosion along the bottom surface of the flow; frontal entrainment is neglected here. The brittleness assumption implies that the shear stress at the bed surface cannot exceed ${\it\tau}_{c}$. For quasi-stationary flows in a simplified setting, analytic solutions are found for Bingham and frictional–collisional (FC) fluids. Extending this theory to non-stationary flows requires some assumptions for the velocity profile. For the Bingham fluid, the profile of a ‘proxy’ quasi-stationary eroding flow is used; the rheological parameters are chosen to match the instantaneous velocity and shear-layer depth of the non-stationary flow. For the FC fluid, a two-parameter family of functions that closely match the profiles obtained in depth-resolved numerical simulations is assumed; the boundary conditions determine the instantaneous parameter values and allow computation of the erosion rate. Preliminary tests with the FC erosion formula incorporated in a simple slab model indicate that the non-stationary erosion formula matches the depth-resolved simulations asymptotically, but differs in the start-up phase. The non-stationary erosion formulae are valid only up to a limit velocity (and to a limit flow depth if there is Coulomb friction). This appears to mark the transition to another erosion regime – to be described by a different model – where chunks of bed material are intermittently ripped out and gradually entrained into the flow.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aradian, A., Raphaël, E. & de Gennes, P.-G. 2002 Surface flows of granular materials: a short introduction to some recent models. C. R. Phys. 3, 187196.CrossRefGoogle Scholar
Barbolini, M. & Issler, D.(Eds) 2006 Avalanche Test Sites and Research Equipment in Europe – an Updated Overview. SATSIE Project Team. Accessible at http://satsie.ngi.no/docs/satsie_d08.pdf.Google Scholar
Berger, C., McArdell, B. W., Fritschi, B. & Schlunegger, F. 2010 A novel method for measuring the timing of bed erosion during debris flows and floods. Water Resour. Res. 46, W02502.CrossRefGoogle Scholar
Berger, C., McArdell, B. W. & Schlunegger, F. 2011 Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. J. Geophys. Res. 116, F01002.CrossRefGoogle Scholar
Bouchaud, J.-P., Cates, M. E., Ravi Prakash, J. & Edwards, S. F. 1994 A model for the dynamics of sandpile surfaces. J. Phys. I Paris 4 (10), 13831410.Google Scholar
Bouchet, A., Naaim, M., Bellot, H. & Ousset, F. 2004 Experimental study of dense flow avalanches: velocity profiles in steady and fully developed flows. Ann. Glaciol. 38, 3034.CrossRefGoogle Scholar
Boutreux, T., Raphaël, E. & de Gennes, P.-G. 1998 Surface flows of granular materials: a modified picture for thick avalanches. Phys. Rev. E 58 (4), 46924700.CrossRefGoogle Scholar
Breien, H., De Blasio, F. V., Elverhøi, A. & Høeg, K. 2008 Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides 5 (3), 271280.CrossRefGoogle Scholar
Briukhanov, A. V., Grigorian, S. S., Miagkov, S. M., Plam, M. Ya., Shurova, I. Ya., Eglit, M. E. & Yakimov, Yu. L. 1967 On some new approaches to the dynamics of snow avalanches. In Physics of Snow and Ice, Proceedings International Conference Low Temperature Science, Sapporo, Japan, 1966, vol. I, Part 2 (ed. Ôura, H), pp. 12231241. Institute of Low Temperature Science, Hokkaido University.Google Scholar
Brugnot, G. & Pochat, R. 1981 Numerical simulation study of avalanches. J. Glaciol. 27 (95), 7788.CrossRefGoogle Scholar
Cannon, S. H. & Savage, W. Z. 1988 A mass-change model for the estimation of debris-flow runout. J. Geol. 96, 221227.CrossRefGoogle Scholar
Carroll, C. S., Louge, M. Y. & Turnbull, B. 2013 Frontal dynamics of powder snow avalanches. J. Geophys. Res. 118 (2), 913924.CrossRefGoogle Scholar
Cherepanov, G. P. & Esparragoza, I. E. 2008 A fracture-entrainment model for snow avalanches. J. Glaciol. 54 (184), 182188.CrossRefGoogle Scholar
Crosta, G. B., Imposimato, S. & Roddeman, D. 2009a Numerical modeling of 2-d granular step collapse on erodible and nonerodible surface. J. Geophys. Res. F114, F03020.Google Scholar
Crosta, G. B., Imposimato, S. & Roddeman, D. 2009b Numerical modelling of entrainment/deposition in rock and debris-avalanches. Engng Geol. 109 (1–2), 135145.CrossRefGoogle Scholar
Douady, S., Andreotti, B. & Daerr, A. 1999 On granular surface flow equations. Eur. Phys. J. B 11, 131142.CrossRefGoogle Scholar
Dufour, F., Gruber, U., Issler, D., Schaer, M., Dawes, N. & Hiller, M.1999 Grobauswertung der Lawinenereignisse 1998/1999 im Grosslawinenversuchsgelände Vallée de la Sionne. Interner Bericht 732. Eidg. Institut für Schnee- und Lawinenforschung, CH-7260 Davos Dorf, Switzerland.Google Scholar
Eglit, M. E.1968 Teoreticheskie podkhody k raschetu dvizheniia snezhnyk lavin. (Theoretical approaches to avalanche dynamics). Itogi Nauki. Gidrologiia Sushi. Gliatsiologiia pp. 69–97 (in Russian). English transl. Soviet Avalanche Research – Avalanche Bibliography Update: 1977–1983. Glaciological Data Report GD-16, pp. 63–116. World Data Center A for Glaciology (Snow and Ice), 1984.Google Scholar
Eglit, M. E. & Demidov, K. S. 2005 Mathematical modeling of snow entrainment in avalanche motion. Cold Reg. Sci. Technol. 43 (1–2), 1023.CrossRefGoogle Scholar
Eglit, M. E. & Yakubenko, A. E. 2014 Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., doi:10.1016/j.coldregions.2014.07.002.CrossRefGoogle Scholar
Finlayson, B. A. & Scriven, L. E. 1966 The method of weighted residuals – a review. Appl. Mech. Rev. 19 (9), 735748.Google Scholar
Fukushima, Y. & Parker, G. 1990 Numerical simulation of powder-snow avalanches. J. Glaciol. 36 (123), 229237.CrossRefGoogle Scholar
Gauer, P. & Issler, D. 2004 Possible erosion mechanisms in snow avalanches. Ann. Glaciol. 38, 384392.CrossRefGoogle Scholar
Gray, J. M. N. T. 2001 Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441, 129.CrossRefGoogle Scholar
Grigorian, S. S. & Ostroumov, A. V.1977 The mathematical model for slope processes of avalanche type (in Russian). Scientific Report 1955. Institute for Mechanics, Moscow State University, Moscow, Russia.Google Scholar
Gubler, H. 1987 Measurements and modelling of snow avalanche speeds. In Avalanche Formation, Movement and Effects (Proceedings of the Davos Symposium, September 1986) (ed. Salm, B. & Gubler, H.), IAHS Publication, vol. 162, pp. 405420. IAHS Press.Google Scholar
Gubler, H. & Hiller, M. 1984 The use of microwave FMCW radar in snow and avalanche research. Cold Reg. Sci. Technol. 9, 109119.CrossRefGoogle Scholar
Hermann, F., Issler, D. & Keller, S. 1994 Towards a numerical model of powder snow avalanches. In Proceedings of the Second European Computational Fluid Dynamics Conference, Stuttgart (Germany), September 5–8, 1994 (ed. Wagner, S., Hirschel, E. H., Périaux, J. & Piva, R.), pp. 948955. J. Wiley & Sons.Google Scholar
Hungr, O. 1995 A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J. 32, 610623.CrossRefGoogle Scholar
Hungr, O. & Evans, S. G. 2004 Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Bull. Geol. Soc. Am. 116 (9–10), 12401252.CrossRefGoogle Scholar
Imran, J., Harff, P. & Parker, G. 2001 A numerical model of submarine debris flows with graphical user interface. Comput. Geosci. 274 (6), 717729.CrossRefGoogle Scholar
Issler, D. 2003 Experimental information on the dynamics of dry-snow avalanches. In Dynamic Response of Granular and Porous Materials Under Large and Catastrophic Deformations (ed. Hutter, K. & Kirchner, N.), Lecture Notes in Applied and Computational Mechanics, vol. 11, pp. 109160. Springer.CrossRefGoogle Scholar
Issler, D., Errera, A., Priano, S., Gubler, H., Teufen, B. & Krummenacher, B. 2008 Inferences on flow mechanisms from snow avalanche deposits. Ann. Glaciol. 49 (1), 187192.CrossRefGoogle Scholar
Issler, D., Gauer, P. & Barbolini, M. 2000 Continuum models of particle entrainment and deposition in snow drift and avalanche dynamics. In Models of Continuum Mechanics in Analysis and Engineering. Proceedings of a Conference Held at the Technische Universität Darmstadt, September 30 to October 2, 1998 (ed. Balean, R.), pp. 5880. Shaker Verlag.Google Scholar
Issler, D., Gauer, P., Schaer, M. & Keller, S.1996 Staublawinenereignisse im Winter 1995: Seewis (GR), Adelboden (BE) und Col du Pillon (VD). Interner Bericht 694. Eidg. Institut für Schnee- und Lawinenforschung, Davos, Switzerland.Google Scholar
Issler, D. & Jóhannesson, T.2006 On the formulation of entrainment in gravity mass flow models. NGI Rep. 20021048-12. Norwegian Geotechnical Institute, N-0806 Oslo, Norway.Google Scholar
Issler, D. & Jóhannesson, T.2011 Dynamically consistent entrainment and deposition rates in depth-averaged gravity mass flow models. NGI Tech. Note 20110112-01-TN. Norwegian Geotechnical Institute, Oslo, Norway.Google Scholar
Issler, D. & Pastor Pérez, M. 2011 Interplay of entrainment and rheology in snow avalanches: a numerical study. Ann. Glaciol. 52 (58), 143147.CrossRefGoogle Scholar
Iverson, R. M. 2012 Elementary theory of bed-sediment entrainment by debris flows and avalanches. J. Geophys. Res. F117, F03006.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.CrossRefGoogle ScholarPubMed
Kowalski, J. & McElwaine, J. N. 2013 Shallow two-component gravity driven flows with vertical variation. J. Fluid Mech. 714, 434462.CrossRefGoogle Scholar
Lied, K., Instanes, B., Domaas, U. & Harbitz, C. 1998 Avalanche at Bleie, Ullensvang, January 1994. In 25 Years of Snow Avalanche Research, Voss 1998 (ed. Hestnes, E.), NGI Publication, vol. 203, pp. 175181. Norwegian Geotechnical Institute.Google Scholar
Louge, M. Y. 2003 A model for dense granular flows down bumpy inclines. Phys. Rev. E 67, 061303.CrossRefGoogle ScholarPubMed
Louge, M. Y., Carroll, C. S. & Turnbull, B. 2011 Role of pore pressure gradients in sustaining frontal particle entrainment in eruption currents: the case of powder snow avalanches. J. Geophys. Res. 116 (F4), 002065.CrossRefGoogle Scholar
Maeno, N. & Nishimura, K. 1987 Numerical computation of snow avalanche motion in a three-dimensional topography. Low Temp. Sci. A 46, 99110; (in Japanese).Google Scholar
Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G. & Lucas, A. 2010 Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115, F03040.CrossRefGoogle Scholar
McElwaine, J. N. 2005 Rotational flow in gravity current heads. Phil. Trans. R. Soc. Lond. A 363, 16031623.CrossRefGoogle ScholarPubMed
Mellor, M. 1977 Engineering properties of snow. J. Glaciol. 19 (81), 1566.CrossRefGoogle Scholar
Naaim, M., Naaim-Bouvet, F., Faug, T. & Bouchet, A. 2004 Dense snow avalanche modeling: flow, erosion, deposition and obstacle effects. Cold Reg. Sci. Technol. 39 (2–3), 193204.CrossRefGoogle Scholar
Nishimura, K. & Maeno, N. 1987 Experiments on snow-avalanche dynamics. In Avalanche Formation, Movements and Effects. Proceedings of the Davos Symposium, September 1986 (ed. Salm, B. & Gubler, H.), IAHS Publication, vol. 162, pp. 395404. IAHS Press.Google Scholar
Norem, H., Irgens, F. & Schieldrop, B. 1987 A continuum model for calculating snow avalanche velocities. In Avalanche Formation, Movement and Effects. Proceedings of the Davos Symposium, September 1986 (ed. Salm, B. & Gubler, H.), IAHS Publication, vol. 162, pp. 363380. IAHS Press.Google Scholar
Norem, H. & Schieldrop, B.1991 Stress analyses for numerical modelling of submarine flowslides. NGI Rep. 522090-10. Norges Geotekniske Institutt, Oslo, Norway.Google Scholar
Owen, P. R. 1964 Saltation of uniform grains in air. J. Fluid Mech. 20 (2), 225242.CrossRefGoogle Scholar
Parker, G., Fukushima, Y. & Pantin, H. M. 1986 Self-accelerating turbidity currents. J. Fluid Mech. 171, 145181.CrossRefGoogle Scholar
Pastor, M., Haddad, B., Sorbino, G., Cuomo, S. & Drempetic, V. 2009 A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Intl J. Numer. Anal. Meth. Geomech. 33 (2), 143172.CrossRefGoogle Scholar
Rajchenbach, J. 2003 Dense, rapid flows of inelastic grains under gravity. Phys. Rev. Lett. 90, 144302.CrossRefGoogle Scholar
Rognon, P. G., Roux, J.-N., Naaim, M. & Chevoir, F. 2008 Dense flows of cohesive granular materials. J. Fluid Mech. 596, 2147.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357369.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14 (1), 170183.CrossRefGoogle Scholar
Sailer, R., Fellin, W., Fromm, R., Jörg, Ph., Rammer, L., Sampl, P. & Schaffhauser, A. 2008 Snow avalanche mass-balance calculation and simulation-model verification. Ann. Glaciol. 48 (1), 183192.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C. & Manneville, P. 2006 Wave patterns in film flows: modelling and three-dimensional waves. J. Fluid Mech. 562, 183222.CrossRefGoogle Scholar
Scheiwiller, T.1986 Dynamics of powder-snow avalanches. PhD thesis, Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich, Zürich, Switzerland, available from http://people.ee.ethz.ch/∼vawweb/vaw_mitteilungen/081/081_g.pdf.Google Scholar
Scheiwiller, T. & Hutter, K. 1982 Lawinendynamik – Übersicht über Experimente und theoretische Modelle von Fliess- und Staublawinen, Mittlg. VAW 58. Laboratory of Hydraulics, Hydrology and Glaciology. ETH Zürich, (in German), available from http://people.ee.ethz.ch/∼vawweb/vaw_mitteilungen/058/058_g.pdf.Google Scholar
Sovilla, B.2004 Field experiments and numerical modelling of mass entrainment and deposition processes in snow avalanches. PhD thesis, ETH Zürich, Zürich, Switzerland, available from http://e-collection.library.ethz.ch/eserv/eth:27359/eth-27359-02.pdf.Google Scholar
Sovilla, B., Burlando, P. & Bartelt, P. 2006 Field experiments and numerical modeling of mass entrainment in snow avalanches. J. Geophys. Res. 111, F03007.CrossRefGoogle Scholar
Sovilla, B., McElwaine, J. N., Schaer, M. & Vallet, J. 2010 Variation of deposition depth with slope angle in snow avalanches: measurements from Vallée de la Sionne. J. Geophys. Res. 115 (F2), 113.CrossRefGoogle Scholar
Sovilla, B., Sommavilla, F. & Tomaselli, A. 2001 Measurements of mass balance in dense snow avalanche events. Ann. Glaciol. 32, 230236.CrossRefGoogle Scholar
Vallet, J., Gruber, U. & Dufour, F. 2001 Photogrammetric avalanche measurements at Vallée de la Sionne, Switzerland. Ann. Glaciol. 32, 141146.CrossRefGoogle Scholar
Voellmy, A. 1955 Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73, (12, 15, 17, 19), 159–165, 212–217, 246–249, 280–285. Available online at: http://retro.seals.ch/digbib/voltoc?pid=sbz-002:1955:73.Google Scholar
14
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dynamically consistent entrainment laws for depth-averaged avalanche models
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Dynamically consistent entrainment laws for depth-averaged avalanche models
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Dynamically consistent entrainment laws for depth-averaged avalanche models
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *