Hostname: page-component-6b989bf9dc-jks4b Total loading time: 0 Render date: 2024-04-15T03:27:30.075Z Has data issue: false hasContentIssue false

Early evolution of the compressible mixing layer issued from two turbulent streams

Published online by Cambridge University Press:  15 July 2015

Sergio Pirozzoli*
Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma ‘La Sapienza’, via Eudossiana 18, 00184 Roma, Italia
Matteo Bernardini
Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma ‘La Sapienza’, via Eudossiana 18, 00184 Roma, Italia
Simon Marié
DynFluid Laboratory, Conservatoire National des Arts et Métiers, 151 blvd de l’Hopital 7013, Paris, France
Francesco Grasso
DynFluid Laboratory, Conservatoire National des Arts et Métiers, 151 blvd de l’Hopital 7013, Paris, France
Email address for correspondence:


Direct numerical simulation of the spatially developing mixing layer issuing from two turbulent streams past a splitter plate is carried out under mild compressibility conditions. The study mainly focuses on the early evolution of the mixing region, where transition occurs from a wake-like to a canonical mixing-layer-like behaviour, corresponding to the filling-up of the initial momentum deficit. The mixing layer is found to initially grow faster than linearly, and then at a sub-linear rate further downstream. The Reynolds stress components are in close agreement with reference experiments and follow a continued slow decay till the end of the computational domain. These observations are suggestive of the occurrence of incomplete similarity in the developing turbulent mixing layer. Coherent eddies are found to form in the close proximity of the splitter plate trailing edge, that are mainly organized in bands, initially skewed and then parallel to the spanwise direction. Dynamic mode decomposition is used to educe the dynamically relevant features, and it is found to be capable of singling out the coherent eddies responsible for mixing layer development.

© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Batchelor, G. K. 1951 Pressure fluctuations in isotropic turbulence. Proc. Camb. Phil. Soc. 47, 359374.CrossRefGoogle Scholar
Bell, J. H. & Mehta, R. D. 1990 Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28 (12), 20342042.Google Scholar
Bernardini, M. & Pirozzoli, S. 2009 A general strategy for the optimization of Runge–Kutta schemes for wave propagation phenomena. J. Comput. Phys. 228, 41824199.Google Scholar
Bernardini, M., Pirozzoli, S. & Grasso, F. 2011 The wall pressure signature of transonic shock/boundary layer interaction. J. Fluid Mech. 671, 288312.Google Scholar
Blake, W. K. 1986 Mechanics of Flow-Induced Sound and Vibration. Academic.Google Scholar
Bradshaw, P. 1966 The effect of initial conditions on the development of a free shear layer. J. Fluid Mech. 26, 225236.Google Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid. Mech. 64, 775816.Google Scholar
Clemens, N. T. & Mungal, M. G. 1995 Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171216.Google Scholar
Dimotakis, P. E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329356.Google Scholar
Foysi, H. & Sarkar, S. 2010 The compressible mixing layer: an LES study. Theoret. Comput. Fluid Dyn. 24, 565588.Google Scholar
Fu, S. & Li, Q. 2006 Numerical simulation of compressible mixing layers. Intl J. Heat Fluid Flow 27, 895901.Google Scholar
George, W. K. 1995 Some new ideas for similarity of turbulent shear flows. Turbul. Heat Mass Transfer 1, 1324.Google Scholar
Ghaemi, S. & Scarano, F. 2011 Counter-hairpin vortices in the turbulent wake of a sharp trailing edge. J. Fluid Mech. 689, 317356.CrossRefGoogle Scholar
Goebel, S. G. & Dutton, J. C. 1991 Experimental study of compressible turbulent mixing layers. AIAA J. 29, 538546.CrossRefGoogle Scholar
Goebel, S. G., Dutton, J. C., Krier, H. & Renie, J. P. 1990 Mean and turbulent velocity measurements of supersonic mixing layers. Exp. Fluids 8, 263272.Google Scholar
Laizet, S., Lardeau, S. & Lamballais, E. 2010 Direct numerical simulation of a mixing layer downstream a thick splitter plate. Phys. Fluids 22, 015104.Google Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.CrossRefGoogle Scholar
Pirozzoli, S. 2011 Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163194.Google Scholar
Pirozzoli, S. 2012 On the size of the energy-containing eddies in the outer turbulent wall layer. J. Fluid Mech. 702, 521532.Google Scholar
Pirozzoli, S. & Bernardini, M. 2013 Probing high-Reynolds-number effects in numerical boundary layers. Phys. Fluids 25, 021704.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6, 903923.CrossRefGoogle Scholar
Rowley, C. W., Mezic, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.Google Scholar
Salvadore, F., Bernardini, M. & Botti, M. 2013 GPU accelerated flow solver for direct numerical simulation of turbulent flows. J. Comput. Phys. 235, 129142.CrossRefGoogle Scholar
Sandham, N. D. & Reynolds, W. C. 1991 Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133158.Google Scholar
Sandham, N. D. & Sandberg, R. D. 2009 Direct numerical simulation of the early development of a turbulent mixing layer downstream of a splitter plate. J. Turbul. 10, 117.Google Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.Google Scholar
Sharma, A., Bhaskaran, R. & Lele, S. K.2011 Large-eddy simulation of supersonic, turbulent mixing layers downstream of a splitter plate. AIAA Paper 2011-208.Google Scholar
Slessor, M. D., Bond, M. & Dimotakis, P. E. 1998 Turbulent shear-layer mixing at high Reynolds numbers: effects of inflow conditions. J. Fluid Mech. 376, 115138.Google Scholar
Slessor, M. D., Zhuang, M. & Dimotakis, P. E. 2000 Turbulent shear-layer mixing: growth-rate compressibility scaling. J. Fluid Mech. 414, 3545.Google Scholar
Tam, C. K. W. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 1743.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Vreman, A. W., Sandham, N. D. & Luo, K. H. 1996 Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235258.CrossRefGoogle Scholar
Wang, Y., Tanahashi, M. & Miyauchi, T. 2007 Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer. Intl J. Heat Fluid Flow 28, 12801290.Google Scholar
Zhou, Q., He, F. & Shen, M. Y. 2012 Direct numerical simulation of a spatially developing compressible plane mixing layer: flow structures and mean flow properties. J. Fluid Mech. 711, 437468.CrossRefGoogle Scholar
Zhuang, M. & Dimotakis, P. E. 1995 Instability of wake-dominated compressible mixing layers. Phys. Fluids 7, 24892495.Google Scholar