We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Email your librarian or administrator to recommend adding this journal to your organisation's collection.
You are leaving Cambridge Core and will be taken to this journal's article submission site.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account. Find out more about saving content to .
To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.
Tubular vesicles in extensional flow can undergo ‘pearling’, i.e. the formation of beads in their central neck reminiscent of the Rayleigh–Plateau instability for droplets. In this paper, we perform boundary integral simulations to determine the conditions for the onset of this instability. Our simulations agree well with experiments, and we explore additional topics such as the role of the vesicle’s initial shape on the number of pearls formed. We also compare our simulations to simple physical models of pearling that have been presented in the literature, where the vesicle is approximated as an infinitely long cylinder with a constant surface tension and bending modulus. We present a complete linear stability analysis of this idealized problem, including the effects of non-axisymmetric deformations as well as surface viscosity. We demonstrate that, while such models capture the essential physics of pearling, they cannot capture the stability of these transitions accurately, since finite length effects and non-uniform surface tension effects are important. We close our paper with a brief discussion of vesicles in compressional flows. Unlike quasi-spherical vesicles, we find that tubular vesicles can transition to a wide variety of permanent, buckled states under compression. The idealized problem mentioned above gives the essential physics behind these instabilities, which to our knowledge has not been examined heretofore.
We consider the stability of a long free film of liquid composed of two immiscible layers of differing viscosities, where each layer experiences a van der Waals force between its interfaces. We analyse the different ways in which the system can exhibit interfacial instability when the liquid layers are sufficiently thin. For an excess of surfactant on one gas–liquid interface, the coupling between the layers is relatively weak and the instability is manifested as temporally separated rupture events in each layer. Conversely, in the absence of surfactant, the coupling between the layers is much stronger and the instability is manifested as rupture of both layers simultaneously. These features are consistent with recent experimental observations.
Thermal evolution of telluric planets is mainly controlled by secular cooling and internal heating due to the decay of radioactive isotopes, two processes that are equivalent from the standpoint of convection dynamics. In a fluid cooled from above and volumetrically heated, convection is dominated by instabilities of the top boundary layer and the interior thermal structure is non-isentropic. Here we present innovative laboratory experiments where microwave radiation is used to generate uniform internal heat in fluids at high Prandtl number (${>}300$) and high Rayleigh–Roberts number (ranging from $10^{4}$ to $10^{7}$), appropriate for planetary mantle convection. Non-invasive techniques are employed to determine both temperature and velocity fields. We successfully validate the experimental results by conducting numerical simulations in three-dimensional Cartesian geometry that reproduce the experimental conditions. Scaling laws relating key characteristics of the thermal boundary layer, namely its thickness and temperature drop, to the Rayleigh–Roberts number have been established for both rigid and free-slip boundary conditions. A robust conclusion is that for rigid boundary conditions the internal temperature is significantly higher than for free-slip boundary conditions. Our scaling laws, coupled with plausible physical parameters entering the Rayleigh–Roberts number, enable us to calculate the mantle potential temperature for the Earth and Venus, two telluric planets with different mechanical boundary conditions at their surface.
We explore the evolution of the gravest internal Kelvin wave in a two-layer rotating cylindrical basin, using direct numerical simulations (DNS) with a hyper-viscosity/diffusion approach to illustrate different dynamic and energetic regimes. The initial condition is derived from Csanady’s (J. Geophys. Res., vol. 72, 1967, pp. 4151–4162) conceptual model, which is adapted by allowing molecular diffusion to smooth the discontinuous idealized solution over a transition scale, ${\it\delta}_{i}$, taken to be small compared to both layer thicknesses $h_{\ell },\ell =1,2$. The different regimes are obtained by varying the initial wave amplitude, ${\it\eta}_{0}$, for the same stratification and rotation. Increasing ${\it\eta}_{0}$ increases both the tendency for wave steepening and the shear in the vicinity of the density interface. We present results across several regimes: from the damped, linear–laminar regime (DLR), for which ${\it\eta}_{0}\sim {\it\delta}_{i}$ and the Kelvin wave retains its linear character, to the nonlinear–turbulent transition regime (TR), for which the amplitude ${\it\eta}_{0}$ approaches the thickness of the (thinner) upper layer $h_{1}$, and nonlinearity and dispersion become significant, leading to hydrodynamic instabilities at the interface. In the TR, localized turbulent patches are produced by Kelvin wave breaking, i.e. shear and convective instabilities that occur at the front and tail of energetic waves within an internal Rossby radius of deformation from the boundary. The mixing and dissipation associated with the patches are characterized in terms of dimensionless turbulence intensity parameters that quantify the locally elevated dissipation rates of kinetic energy and buoyancy variance.
We study the flow and leakage of gravity currents injected into an unsaturated (dry), vertically confined porous layer containing a localized outlet or leakage point in its lower boundary. The leakage is driven by the combination of the gravitational hydrostatic pressure head of the current above the outlet and the pressure build-up from driving fluid downstream of the leakage point. Model solutions illustrate transitions towards one of three long-term regimes of flow, depending on the value of a dimensionless parameter $D$, which, when positive, represents the ratio of the hydrostatic head above the outlet for which gravity-driven leakage balances the input flux, to the depth of the medium. If $D\leqslant 0$, the input flux is insufficient to accumulate any fluid above the outlet and fluid migrates directly through the leakage pathway. If $0<D\leqslant 1$, some fluid propagates downstream of the outlet but retains a free surface above it. The leakage rate subsequently approaches the input flux asymptotically but much more gradually than if $D\leqslant 0$. If $D>1$, the current fills the entire depth of the medium above the outlet. Confinement then fixes gravity-driven leakage at a constant rate but introduces a new force driving leakage in the form of the pressure build-up associated with mobilizing fluid downstream of the outlet. This causes the leakage rate to approach the injection rate faster than would occur in the absence of the confining boundary. This conclusion is in complete contrast to fluid-saturated media, where confinement can potentially reduce long-term leakage by orders of magnitude. Data from a new series of laboratory experiments confirm these predictions.
An experimental investigation of resonant standing water waves in a rectangular tank with a corrugated bottom is reported. The study was stimulated by the theory of Howard & Yu (J. Fluid Mech., vol. 593, 2007, pp. 209–234) predicting the existence of normal modes that can be significantly affected by Bragg reflection/scattering. As a result, the amplitude of the standing waves (normal modes) varies exponentially along the entire length of the tank, or from the centre out in each direction, depending on the phase of the corrugations at the tank endwalls. Experiments were conducted in a 5 m tank fitted with a sinusoidal bottom with one adjustable endwall. Waves were excited by small-amplitude sinusoidal horizontal movement of the tank using an electrical motor drive system. Simultaneous time-series data of standing oscillations were recorded at well-separated positions along the tank to measure the growth in amplitude. Waveforms over a section of the tank were filmed through the transparent acrylic walls. Except for very shallow depths and near the tank endwalls, the experimental measurements of resonant frequencies, mean wavelengths, free-surface waveforms and amplitude growth are found in essential agreement with the Bragg resonant normal mode theory.
The transport equation for the mean turbulent energy dissipation rate $\overline{{\it\epsilon}}$ along the centreline of a fully developed channel flow is derived by applying the limit at small separations to the two-point budget equation. Since the ratio of the isotropic energy dissipation rate to the mean turbulent energy dissipation rate $\overline{{\it\epsilon}}_{iso}/\overline{{\it\epsilon}}$ is sufficiently close to 1 on the centreline, our main focus is on the isotropic form of the transport equation. It is found that the imbalance between the production of $\overline{{\it\epsilon}}$ due to vortex stretching and the destruction of $\overline{{\it\epsilon}}$ caused by the action of viscosity is governed by the diffusion of $\overline{{\it\epsilon}}$ by the wall-normal velocity fluctuation. This imbalance is intrinsically different from the advection-driven imbalance in decaying-type flows, such as grid turbulence, jets and wakes. In effect, the different types of imbalance represent different constraints on the relation between the skewness of the longitudinal velocity derivative $S_{1,1}$ and the destruction coefficient $G$ of enstrophy in different flows, thus resulting in non-universal approaches of $S_{1,1}$ towards a constant value as the Taylor microscale Reynolds number, $R_{{\it\lambda}}$, increases. For example, the approach is slower for the measured values of $S_{1,1}$ along either the channel or pipe centreline than along the axis in the self-preserving region of a round jet. The data for $S_{1,1}$ collected in different flows strongly suggest that, in each flow, the magnitude of $S_{1,1}$ is bounded, the value being slightly larger than 0.5.
Dispersion quantifies the impact of subscale velocity fluctuations on the effective movement of particles and the evolution of scalar distributions in heterogeneous flows. Which fluctuation scales are represented by dispersion, and the very meaning of dispersion, depends on the definition of the subscale, or the corresponding coarse-graining scale. We study here the dispersion effect due to velocity fluctuations that are sampled on the homogenization scale of the scalar distribution. This homogenization scale is identified with the mixing scale, the characteristic length below which the scalar is well mixed. It evolves in time as a result of local-scale dispersion and the deformation of material fluid elements in the heterogeneous flow. The fluctuation scales below the mixing scale are equally accessible to all scalar particles, and thus contribute to enhanced scalar dispersion and mixing. We focus here on transport in steady spatially heterogeneous flow fields such as porous media flows. The dispersion effect is measured by mixing-scale dependent dispersion coefficients, which are defined through a filtering operation based on the evolving mixing scale. This renders the coarse-grained velocity as a function of time, which evolves as velocity fluctuation scales are assimilated by the expanding scalar. We study the behaviour of the mixing-scale dependent dispersion coefficients for transport in a random shear flow and in heterogeneous porous media. Using a stochastic modelling framework, we derive explicit expressions for their time behaviour. The dispersion coefficients evolve as the mixing scale scans through the pertinent velocity fluctuation scales, which reflects the fundamental role of the interaction of scalar and velocity fluctuation scales in solute mixing and dispersion.
Direct numerical simulation of the spatially developing mixing layer issuing from two turbulent streams past a splitter plate is carried out under mild compressibility conditions. The study mainly focuses on the early evolution of the mixing region, where transition occurs from a wake-like to a canonical mixing-layer-like behaviour, corresponding to the filling-up of the initial momentum deficit. The mixing layer is found to initially grow faster than linearly, and then at a sub-linear rate further downstream. The Reynolds stress components are in close agreement with reference experiments and follow a continued slow decay till the end of the computational domain. These observations are suggestive of the occurrence of incomplete similarity in the developing turbulent mixing layer. Coherent eddies are found to form in the close proximity of the splitter plate trailing edge, that are mainly organized in bands, initially skewed and then parallel to the spanwise direction. Dynamic mode decomposition is used to educe the dynamically relevant features, and it is found to be capable of singling out the coherent eddies responsible for mixing layer development.
Direct numerical simulations were used to investigate the downstream decay of fully developed flow in a $180^{\circ }$ curved pipe that exits into a straight outlet. The flow is studied for a range of Reynolds numbers and pipe-to-curvature radius ratios. Velocity, pressure and vorticity fields are calculated to visualize the downstream decay process. Transition ‘decay’ lengths are calculated using the norm of the velocity perturbation from the Hagen–Poiseuille velocity profile, the wall-averaged shear stress, the integral of the magnitude of the vorticity, and the maximum value of the $Q$-criterion on a cross-section. Transition lengths to the fully developed Poiseuille distribution are found to have a linear dependence on the Reynolds number with no noticeable dependence on the pipe-to-curvature radius ratio, despite the flow’s dependence on both parameters. This linear dependence of Reynolds number on the transition length is explained by linearizing the Navier–Stokes equations about the Poiseuille flow, using the form of the fully developed Dean flow as an initial condition, and using appropriate scaling arguments. We extend our results by comparing this flow recovery downstream of a curved pipe to the flow recovery in the downstream outlets of a T-junction flow. Specifically, we compare the transition lengths between these flows and document how the transition lengths depend on the Reynolds number.
Using direct numerical simulation of the Navier–Stokes equations, we analyse the dynamics of the interface between air and water when the two phases are driven by opposite pressure gradients (countercurrent configuration). The Reynolds number ($\mathit{Re}_{{\it\tau}}$), the Weber number ($\mathit{We}$) and the Froude number ($\mathit{Fr}$) fully describe the physical problem. We examine the problem of the transient growth of interface waves for different combinations of physical parameters. Keeping $\mathit{Re}_{{\it\tau}}$ constant and varying $\mathit{We}$ and $\mathit{Fr}$, we show that, in the initial stages of the wave generation process, the amplitude of the interface elevation ${\it\eta}$ grows in time as ${\it\eta}\propto t^{2/5}$. The wavenumber spectra, $E(k_{x})$, of the surface elevation in the capillary range are in good agreement with the predictions of wave turbulence theory. Finally, the wave-induced modification of the average wind and current velocity profiles is addressed.
Ray and Wentzel–Kramers–Brillouin (WKB) approximations have long been important tools in understanding and modelling propagation of atmospheric waves. However, contradictory claims regarding the applicability and uniqueness of the WKB approximation persist in the literature. Here, we consider linear acoustic–gravity waves (AGWs) in a layered atmosphere with horizontal winds. A self-consistent version of the WKB approximation is systematically derived from first principles and compared to ad hoc approximations proposed earlier. The parameters of the problem are identified that need to be small to ensure the validity of the WKB approximation. Properties of low-order WKB approximations are discussed in some detail. Contrary to the better-studied cases of acoustic waves and internal gravity waves in the Boussinesq approximation, the WKB solution contains the geometric, or Berry, phase. The Berry phase is generally non-negligible for AGWs in a moving atmosphere. In other words, knowledge of the AGW dispersion relation is not sufficient for calculation of the wave phase.
This work aims to gain a relatively thorough understanding of unsteady predominant coherent structures around an Ahmed body with a slant angle of $25^{\circ }$, corresponding to the high-drag regime. Extensive hot-wire, flow visualization and particle image velocimetry measurements were conducted in a wind tunnel at $\mathit{Re}=(0.45{-}2.4)\times 10^{5}$ around the Ahmed body. A number of distinct Strouhal numbers (St) have been found, two over the rear window, three behind the vertical base and two above the roof. The origin of every St has been identified. The two detected above the roof are ascribed to the hairpin vortices that emanate from the recirculation bubble formed near the leading edge and to the oscillation of the core of longitudinal vortices that originate from bubble pulsation, respectively. The two captured over the window originate from the hairpin vortices and the shear layers over the roof and side surface, respectively. One measured in the wake results from the structures emanating alternately from the upper and lower recirculation bubbles. The remaining two detected behind the lower edge of the base are connected to the cylindrical struts, respectively, which simulate wheels. These unsteady structures and corresponding St reconcile the widely scattered St data in the literature. The dependence on Re of these Strouhal numbers is also addressed, along with the effect of the turbulent intensity of oncoming flow on the flow structures. A conceptual model is proposed for the first time, which embraces both steady and unsteady coherent structures around the body.
The viscoelastic analogue to the Newtonian Orr amplification mechanism is examined using linear theory. A weak, two-dimensional Gaussian vortex is superposed onto a uniform viscoelastic shear flow. Whilst in the Newtonian solution the spanwise vorticity perturbations are simply advected, the viscoelastic behaviour is markedly different. When the polymer relaxation rate is much slower than the rate of deformation by the shear, the vortex splits into a new pair of co-rotating but counter-propagating vortices. Furthermore, the disturbance exhibits a significant amplification in its spanwise vorticity as it is tilted forward by the shear. Asymptotic solutions for an Oldroyd-B fluid in the limits of high and low elasticity isolate and explain these two effects. The splitting of the vortex is a manifestation of vorticity wave propagation along the tensioned mean-flow streamlines, while the spanwise vorticity growth is driven by the amplification of a polymer torque perturbation. The analysis explicitly demonstrates that the polymer torque amplifies as the disturbance becomes aligned with the shear. This behaviour is opposite to the Orr mechanism for energy amplification in Newtonian flows, and is therefore labelled a ‘reverse-Orr’ mechanism. Numerical evaluations of vortex evolutions using the more realistic FENE-P model, which takes into account the finite extensibility of the polymer chains, show the same qualitative behaviour. However, a new form of stress perturbation is established in regions where the polymer is significantly stretched, and results in an earlier onset of decay.
A shock-heated secondary driver is a modification typically applied to an expansion tube which involves placing a volume of helium between the primary diaphragm and the test gas. This modification is normally used to either increase the driven shock strength through the test gas for high-enthalpy conditions, or to prevent transmission of primary driver flow disturbances to the test gas for low-enthalpy conditions. In comparison to the basic expansion tube, a secondary driver provides an additional configuration parameter, adds mechanical and operational complexity, and its effect on downstream flow processes is not trivial. This paper reports on a study examining operation of a shock-heated secondary driver across the entire operating envelope of a free-piston-driven expansion tube, using air as the test gas. For high-enthalpy conditions it is confirmed that the secondary driver can provide a performance increase, and it is further shown how this device can be used to fine tune the flow condition even when the free-piston driver configuration is held constant. For low-enthalpy flow conditions, wave processes through the driven tube are too closely coupled, and the secondary driver no longer significantly influences the magnitude of the final test gas flow properties. It is found that these secondary driver operating characteristics depend principally on the initial density ratio between the secondary driver helium gas and the downstream test gas.
Steady streaming vortex flow from microbubbles has been developed into a versatile tool for microfluidic sample manipulation. For ease of manufacture and quantitative control, set-ups have focused on approximately two-dimensional flow geometries based on semi-cylindrical bubbles. The present work demonstrates how the necessary flow confinement perpendicular to the cylinder axis gives rise to non-trivial three-dimensional flow components. This is an important effect in applications such as sorting and micromixing. Using asymptotic theory and numerical integration of fluid trajectories, it is shown that the two-dimensional flow dynamics is modified in two ways: (i) the vortex motion is punctuated by bursts of strong axial displacement near the bubble, on time scales smaller than the vortex period; and (ii) the vortex trajectories drift over time scales much longer than the vortex period, forcing fluid particles onto three-dimensional paths of toroidal topology. Both effects are verified experimentally by quantitative comparison with astigmatism particle tracking velocimetry (APTV) measurements of streaming flows. It is further shown that the long-time flow patterns obey a Hamiltonian description that is applicable to general confined Stokes flows beyond microstreaming.
Surface roughness can affect boundary layer transition by acting as a receptivity mechanism for transient growth. While experiments have investigated transient growth of steady disturbances generated by discrete roughness elements, very few have studied distributed surface roughness. Some work predicts a ‘shielding’ effect, where smaller distributed roughness displaces the boundary layer away from the wall and lessens the impact of larger roughness peaks. This work describes an experiment specifically designed to study this effect. Three roughness configurations (a deterministic distributed roughness patch, a slanted rectangular prism, and the combination of the two) were manufactured using rapid prototyping and installed flush with the wall of a flat plate boundary layer. Naphthalene flow visualization and hotwire anemometry were used to characterize the boundary layer in the wakes of the different roughness configurations. Distributed roughness with roughness Reynolds numbers ($\mathit{Re}_{kk}$) between 113 and 182 initiated small-amplitude disturbances that underwent transient growth. The discrete roughness element created a pair of high- and low-speed steady streaks in the boundary layer at a sub-critical Reynolds number ($\mathit{Re}_{kk}=151$). At a higher Reynolds number ($\mathit{Re}_{kk}=220$), the discrete element created a turbulent wedge 15 boundary layer thicknesses downstream. When the distributed roughness was added around the discrete roughness, the discrete element’s wake amplitude was decreased. For the higher Reynolds number, this provided a small but measurable transition delay. The distributed roughness redirects energy from longer spanwise wavelength modes to shorter spanwise wavelength modes. The presence of the distributed roughness also decreased the growth rate of secondary instabilities in the roughness wake. This work demonstrates that shielding can delay roughness-induced transition and lays the ground work for future studies of roughness-induced transition.
We consider the long-time (many revolutions) behaviour of an axisymmetric isolated anticyclonic vortex of constant density which floats inside a large ambient linear-stratified fluid rotating with constant ${\it\Omega}$. We have developed a closed simple model for the prediction of the vertical thickness to diameter aspect ratio ${\it\alpha}$ (and actually the shape) and internal angular velocity ${\it\omega}$, relative to the ambient, as functions of time $t$. (In our model ${\it\omega}$ is scaled with ${\it\Omega}$; the literature sometimes uses the Rossby number $Ro={\it\omega}/2$.) This model is an extension of the model of Aubert et al. (J. Fluid Mech., vol. 706, 2012, pp. 34–45) and Hassanzadeh et al. (J. Fluid Mech., vol. 706, 2012, pp. 46–57), which derived the connection between ${\it\alpha}$ and ${\it\omega}$, for prescribed $f=2{\it\Omega}$ and buoyancy frequency of the ambient $\mathscr{N}$. This work adds the balance of angular momentum and resolves the spin-up process of the vortex, which were not accounted for in the previous model. The Ekman number $E={\it\nu}/({\it\Omega}L^{2})$ now enters into the formulation; here ${\it\nu}$ is the coefficient of kinematic viscosity and $L$ is the half-height of the vortex, roughly (a sharper definition is given in the paper). The model can be applied to cases of both fixed-volume and injection-sustained vortices.
The often-cited aspect ratio ${\it\alpha}=0.5f/\mathscr{N}$ corresponds to ${\it\omega}\approx -1$, which is a plausible initial condition for typical systems. We show that the continuous ‘decay’ of ${\it\alpha}$ from that value over many revolutions of the system is indeed governed by the spin-up effect which reduces $|{\it\omega}|$, but with significant differences to the classical spin-up of a fluid in a closed solid container. The spin-up shear torque decays with time because the thickness of the boundary shear layer increases. The layer starts as a double Ekman layer (between two fluids) but it quite quickly expands due to stratification effects, and later due to viscous diffusion. This prolongs the spin-up somewhat beyond the classical $E^{-1/2}/{\it\Omega}$ time interval. Moreover, when $|{\it\omega}|$ becomes small, the momentum of angular inertia of the vortex increases like $(1+(1/3)|{\it\omega}|^{-1})$; this further hinders the spin-up, and prolongs the process.
Comparisons of the prediction of the model with previously published experimental and Navier–Stokes simulation data were performed for four cases. In three cases the agreement is good. In one case, the model predicts a much faster decay than the observed one; we have suggested a plausible explanation for this discrepancy.
Confined suspensions of active particles show peculiar dynamics characterized by wall accumulation, as well as upstream swimming, centreline depletion and shear trapping when a pressure-driven flow is imposed. We use theory and numerical simulations to investigate the effects of confinement and non-uniform shear on the dynamics of a dilute suspension of Brownian active swimmers by incorporating a detailed treatment of boundary conditions within a simple kinetic model where the configuration of the suspension is described using a conservation equation for the probability distribution function of particle positions and orientations, and where particle–particle and particle–wall hydrodynamic interactions are neglected. Based on this model, we first investigate the effects of confinement in the absence of flow, in which case the dynamics is governed by a swimming Péclet number, or ratio of the persistence length of particle trajectories over the channel width, and a second swimmer-specific parameter whose inverse measures the strength of propulsion. In the limit of weak and strong propulsion, asymptotic expressions for the full distribution function are derived. For finite propulsion, analytical expressions for the concentration and polarization profiles are also obtained using a truncated moment expansion of the distribution function. In agreement with experimental observations, the existence of a concentration/polarization boundary layer in wide channels is reported and characterized, suggesting that wall accumulation in active suspensions is primarily a kinematic effect that does not require hydrodynamic interactions. Next, we show that application of a pressure-driven Poiseuille flow leads to net upstream swimming of the particles relative to the flow, and an analytical expression for the mean upstream velocity is derived in the weak-flow limit. In stronger imposed flows, we also predict the formation of a depletion layer near the channel centreline, due to cross-streamline migration of the swimming particles towards high-shear regions where they become trapped, and an asymptotic analysis in the strong-flow limit is used to obtain a scale for the depletion layer thickness and to rationalize the non-monotonic dependence of the intensity of depletion upon flow rate. Our theoretical predictions are all shown to be in excellent agreement with finite-volume numerical simulations of the kinetic model, and are also supported by recent experiments on bacterial suspensions in microfluidic devices.
Materials adsorbed onto the surface of a fluid – for instance, crude oil, biogenic slicks or industrial/medical surfactants – will move in response to surface waves. Owing to the difficulty of non-invasive measurement of the spatial distribution of a molecular monolayer, little is known about the dynamics that couple the surface waves and the evolving density field. Here, we report measurements of the spatiotemporal dynamics of the density field of an insoluble surfactant driven by gravity–capillary waves in a shallow cylindrical container. Standing Faraday waves and travelling waves generated by the meniscus are superimposed to create a non-trivial surfactant density field. We measure both the height field of the surface using moiré imaging, and the density field of the surfactant via the fluorescence of NBD-tagged phosphatidylcholine, a lipid. Through phase averaging stroboscopically acquired images of the density field, we determine that the surfactant accumulates on the leading edge of the travelling meniscus waves and in the troughs of the standing Faraday waves. We fit the spatiotemporal variations in the two fields using an ansatz consisting of a superposition of Bessel functions, and report measurements of the wavenumbers and energy damping factors associated with the meniscus and Faraday waves, as well as the spatial and temporal phase shifts between them. While these measurements are largely consistent for both types of waves and both fields, it is notable that the damping factors for height and surfactant in the meniscus waves do not agree. This raises the possibility that there is a contribution from longitudinal waves in addition to the gravity–capillary waves.