Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-4g88t Total loading time: 0.489 Render date: 2021-09-17T14:24:07.431Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The nature of triad interactions in active turbulence

Published online by Cambridge University Press:  26 February 2018

Jonasz Słomka
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
Piotr Suwara
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
Jörn Dunkel*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
*Corresponding
Email address for correspondence: dunkel@mit.edu

Abstract

Generalised Navier–Stokes (GNS) equations describing three-dimensional active fluids with flow-dependent narrow spectral forcing have been shown to possess numerical solutions that can sustain significant energy transfer to larger scales by realising chiral Beltrami-type chaotic flows. To rationalise these findings, we study here the triad truncations of polynomial and Gaussian GNS models focusing on modes lying in the energy injection range. Identifying a previously unknown cubic invariant for the triads, we show that their asymptotic dynamics reduces to that of a forced rigid body coupled to a particle moving in a magnetic field. This analogy allows us to classify triadic interactions by their asymptotic stability: unstable triads correspond to rigid-body forcing along the largest and smallest principal axes, whereas stable triads arise from forcing along the middle axis. Analysis of the polynomial GNS model reveals that unstable triads induce exponential growth of energy and helicity, whereas stable triads develop a limit cycle of bounded energy and helicity. This suggests that the unstable triads dominate the initial relaxation stage of the full hydrodynamic equations, whereas the stable triads determine the statistically stationary state. To test whether this hypothesis extends beyond polynomial dispersion relations, we introduce and investigate an alternative Gaussian active turbulence model. Similar to the polynomial case, the steady-state chaotic flows in the Gaussian model spontaneously accumulate non-zero mean helicity while exhibiting Beltrami statistics and upward energy transport. Our results suggest that self-sustained Beltrami-type flows and an inverse energy cascade may arise generically in the presence of flow-dependent narrow spectral forcing.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexakis, A. 2017 Helically decomposed turbulence. J. Fluid Mech. 812, 752770.CrossRefGoogle Scholar
Arnold, V. I. 1989 Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60. Springer.CrossRefGoogle Scholar
Arnold, V. I. & Khesin, B. A. 1999 Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125. Springer.Google Scholar
Ascher, U. M., Ruuth, S. J. & Wetton, B. T. R. 1995 Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (3), 797823.CrossRefGoogle Scholar
Beresnev, I. A. & Nikolaevskiy, V. N. 1993 A model for nonlinear seismic waves in a medium with instability. Physica D 66, 16.Google Scholar
Biferale, L., Buzzicotti, M. & Linkmann, M. 2017 From two-dimensional to three-dimensional turbulence through two-dimensional three-component flows. Phys. Fluids 29, 111101.CrossRefGoogle Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108 (16), 164501.CrossRefGoogle ScholarPubMed
Biferale, L., Musacchio, S. & Toschi, F. 2013 Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence. J. Fluid Mech. 730, 309327.CrossRefGoogle Scholar
Borue, V. & Orszag, S. A. 1997 Spectra in helical three-dimensional homogeneous isotropic turbulence. Phys. Rev. E 55 (6), 7005.Google Scholar
Bratanov, V., Jenko, F. & Frey, E. 2015 New class of turbulence in active fluids. Proc. Natl Acad. Sci. USA 112 (49), 1504815053.CrossRefGoogle ScholarPubMed
Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. 2013 Emergence of macroscopic directed motion in populations of motile colloids. Nature 503 (7474), 9598.CrossRefGoogle ScholarPubMed
Brissaud, A., Frisch, U., Leorat, J., Lesieur, M. & Mazure, A. 1973 Helicity cascades in fully developed isotropic turbulence. Phys. Fluids 16 (8), 13661367.CrossRefGoogle Scholar
Brotto, T., Caussin, J.-B., Lauga, E. & Bartolo, D. 2013 Hydrodynamics of confined active fluids. Phys. Rev. Lett. 110, 038101.CrossRefGoogle ScholarPubMed
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.CrossRefGoogle Scholar
Constantin, P. & Majda, A. 1988 The Beltrami spectrum for incompressible fluid flows. Commun. Math. Phys. 115 (3), 435456.CrossRefGoogle Scholar
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E. & Kessler, J. O. 2004 Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93 (9), 098103.CrossRefGoogle ScholarPubMed
Dunkel, J., Heidenreich, S., Drescher, K., Wensink, H. H., Bär, M. & Goldstein, R. E. 2013 Fluid dynamics of bacterial turbulence. Phys. Rev. Lett. 110 (22), 228102.CrossRefGoogle ScholarPubMed
Falkovich, G. & Sreenivasan, K. R. 2006 Lessons from hydrodynamic turbulence. Phys. Today 59 (4), 4349.CrossRefGoogle Scholar
Frisch, U. 2004 Turbulence. Cambridge University Press.Google Scholar
Gantmacher, F. R. 2000 The Theory of Matrices, vol. 2. AMS Chelsea Publishing.Google Scholar
Giomi, L. 2015 Geometry and topology of turbulence in active nematics. Phys. Rev. X 5 (3), 031003.Google Scholar
Howse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.CrossRefGoogle ScholarPubMed
Hudson, S. R., Hole, M. J. & Dewar, R. L. 2007 Eigenvalue problems for beltrami fields arising in a three-dimensional toroidal magnetohydrodynamic equilibrium problem. Phys. Plasmas 14 (5), 052505.CrossRefGoogle Scholar
Ishikawa, T., Yoshida, N., Ueno, H., Wiedeman, M., Imai, Y. & Yamaguchi, T. 2011 Energy transport in a concentrated suspension of bacteria. Phys. Rev. Lett. 107 (2), 028102.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Kraichnan, R. H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59 (04), 745752.CrossRefGoogle Scholar
Lee, J. M. 2013 Introduction to Smooth Manifolds, 2nd edn. Springer.Google Scholar
Lessinnes, T., Plunian, F. & Carati, D. 2009 Helical shell models for mhd. Theor. Comput. Fluid Dyn. 23 (6), 439.CrossRefGoogle Scholar
Linkmann, M., Berera, A., McKay, M. & Jäger, J. 2016 Helical mode interactions and spectral transfer processes in magnetohydrodynamic turbulence. J. Fluid Mech. 791, 6196.CrossRefGoogle Scholar
Linkmann, M. & Dallas, V. 2017 Triad interactions and the bidirectional turbulent cascade of magnetic helicity. Phys. Rev. Fluids 2 (5), 054605.CrossRefGoogle Scholar
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. & Simha, R. A. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143.CrossRefGoogle Scholar
Marsh, G. E. 1996 Force-Free Magnetic Fields: Solutions, Topology and Applications. World Scientific.CrossRefGoogle Scholar
Mendelson, N. H., Bourque, A., Wilkening, K., Anderson, K. R. & Watkins, J. C. 1999 Organized cell swimming motions in bacillus subtilis colonies: patterns of short-lived whirls and jets. J. Bacteriol. 181 (2), 600609.Google ScholarPubMed
Moffatt, H. K. 2014a Helicity and singular structures in fluid dynamics. Proc. Natl Acad. Sci. USA 111 (10), 36633670.CrossRefGoogle Scholar
Moffatt, H. K. 2014b Note on the triad interactions of homogeneous turbulence. J. Fluid Mech. 741, R3.CrossRefGoogle Scholar
Needleman, D. & Dogic, Z. 2017 Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048.CrossRefGoogle Scholar
Pedley, T. J. 2010 Collective behaviour of swimming micro-organisms. Exp. Mech. 50, 12931301.CrossRefGoogle Scholar
Rathmann, N. M. & Ditlevsen, P. D. 2017 Pseudo-invariants contributing to inverse energy cascades in three-dimensional turbulence. Phys. Rev. Fluids 2, 054607.CrossRefGoogle Scholar
Sahoo, G., Alexakis, A. & Biferale, L. 2017 Discontinuous transition from direct to inverse cascade in three-dimensional turbulence. Phys. Rev. Lett. 118 (16), 164501.CrossRefGoogle ScholarPubMed
Saintillan, D. & Shelley, M. 2008 Instabilities, pattern formation and mixing in active suspensions. Phys. Fluids 20, 123304.CrossRefGoogle Scholar
Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. 2012 Spontaneous motion in hierarchically assembled active matter. Nature 491, 431434.CrossRefGoogle ScholarPubMed
Słomka, J. & Dunkel, J. 2017a Geometry-dependent viscosity reduction in sheared active fluids. Phys. Rev. Fluids 2, 043102.CrossRefGoogle Scholar
Słomka, J. & Dunkel, J. 2017b Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3d active fluids. Proc. Natl Acad. Sci. USA 114 (9), 21192124.CrossRefGoogle Scholar
Sokolov, A. & Aranson, I. S. 2012 Physical properties of collective motion in suspensions of bacteria. Phys. Rev. Lett. 109 (24), 248109.CrossRefGoogle Scholar
Sokolov, A., Aranson, I. S., Kessler, J. O. & Goldstein, R. E. 2007 Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98 (15), 158102.CrossRefGoogle ScholarPubMed
Tribelsky, M. I. 2008 Patterns in dissipative systems with weakly broken continuous symmetry. Phys. Rev. E 77, 035202.Google ScholarPubMed
Tribelsky, M. I. & Tsuboi, K. 1996 New scenario for transition to turbulence? Phys. Rev. Lett. 76, 16311634.CrossRefGoogle ScholarPubMed
Urzay, J., Doostmohammadi, A. & Yeomans, J. M. 2017 Multi-scale statistics of turbulence motorized by active matter. J. Fluid Mech. 822, 762773.CrossRefGoogle Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4 (2), 350363.CrossRefGoogle Scholar
Waleffe, F. 1993 Inertial transfers in the helical decomposition. Phys. Fluids A 5 (3), 677685.CrossRefGoogle Scholar
Walther, A. & Muller, A. H. E. 2008 Janus particles. Soft Matt. 4, 663668.CrossRefGoogle Scholar
Wensink, H. H., Dunkel, J., Heidenreich, S., Drescher, K., Goldstein, R. E., Löwen, H. & Yeomans, J. M. 2012 Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109 (36), 1430814313.CrossRefGoogle ScholarPubMed
Wolgemuth, C. W. 2008 Collective swimming and the dynamics of bacterial turbulence. Biophys. J. 95 (4), 15641574.CrossRefGoogle ScholarPubMed
Yoshida, Z., Mahajan, S. M., Ohsaki, S., Iqbal, M. & Shatashvili, N. 2001 Beltrami fields in plasmas: high-confinement mode boundary layers and high beta equilibria. Phys. Plasmas 8 (5), 21252131.CrossRefGoogle Scholar
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The nature of triad interactions in active turbulence
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The nature of triad interactions in active turbulence
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The nature of triad interactions in active turbulence
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *