Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-20T13:42:08.905Z Has data issue: false hasContentIssue false

Phoretic flow induced by asymmetric confinement

Published online by Cambridge University Press:  28 June 2016

Maciej Lisicki*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wiberforce Road, Cambridge CB3 0WA, UK Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
Sébastien Michelin
Affiliation:
LadHyX - Département de Mécanique, Ecole Polytechnique - CNRS, 91120 Palaiseau, France
Eric Lauga
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wiberforce Road, Cambridge CB3 0WA, UK
*
Email address for correspondence: m.lisicki@damtp.cam.ac.uk

Abstract

Internal phoretic flows due to the interactions of solid boundaries with local chemical gradients may be created using chemical patterning. Alternatively, we demonstrate here that internal flows might also be induced by geometric asymmetries of chemically homogeneous surfaces. We characterise the circulatory flow created in a cavity enclosed between two eccentric cylindrical walls of uniform chemical activity. Local gradients of the diffusing solute induce a slip flow along the surface of the cylinders, leading to a circulatory bulk flow pattern which can be solved analytically in the diffusive limit. The flow strength can be controlled by adjusting the relative positions of the cylinders, and an optimal configuration is identified. These results provide a model system for tunable phoretic pumps.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 6199.CrossRefGoogle Scholar
Anderson, J. L. & Prieve, D. C. 1984 Diffusiophoresis: migration of colloidal particles in gradients of solute concentration. Separat. Purifi. Rev. 13, 67103.Google Scholar
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339398.CrossRefGoogle Scholar
Córdova-Figueroa, U. M. & Brady, J. F. 2008 Osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 100, 158303.CrossRefGoogle ScholarPubMed
Derjaguin, B. V., Sidorenkov, G. P., Zubashchenkov, E. A. & Kiseleva, E. V. 1947 Kinetic phenomena in boundary films of liquids. Kolloidn. Z. 9, 335347.Google Scholar
Gao, W., Pei, A. & Wang, J. 2012 Water-driven micromotors. Am. Chem. Soc. Nano 6, 84328438.Google ScholarPubMed
Gao, Z., Li, H., Chen, X. & Zhang, H. P. 2015 Using confined bacteria as building blocks to generate fluid flow. Lab on a Chip 15, 45554562.CrossRefGoogle ScholarPubMed
Golestanian, R., Liverpool, T. B. & Ajdari, A. 2007 Designing phoretic micro- and nano-swimmers. New J. Phys. 9, 126.CrossRefGoogle Scholar
Halbert, S. A., Tam, P. Y. & Blandau, R. J. 1976 Egg transport in the rabbit oviduct: the roles of cilia and muscle. Science 191, 10521053.CrossRefGoogle ScholarPubMed
Hirokawa, N., Okada, Y. & Tanaka, Y. 2009 Fluid dynamic mechanism responsible for breaking the left–right symmetry of the human body: the nodal flow. Annu. Rev. Fluid Mech. 41, 5372.CrossRefGoogle Scholar
Howse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 811.CrossRefGoogle ScholarPubMed
Jeffery, G. B. 1921 Plane stress and plane strain in bipolar co-ordinates. Phil. Trans. R. Soc. Lond. A 221 (582-593), 265293.Google Scholar
Jeffery, G. B. 1922 The rotation of two circular cylinders in a viscous fluid. Proc. R. Soc. Lond. A 101 (709), 169174.Google Scholar
Jülicher, F. & Prost, J. 2009 Generic theory of colloidal transport. Eur. Phys. J. E 29, 2736.Google ScholarPubMed
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2015 Autophoretic locomotion from geometric asymmetry. Eur. Phys. J. E 38, 7.Google ScholarPubMed
Michelin, S., Montenegro-Johnson, T. D., De Canio, G., Lobato-Dauzier, N. & Lauga, E. 2015 Geometric pumping in autophoretic channels. Soft Matt. 11, 58045811.CrossRefGoogle ScholarPubMed
Montenegro-Johnson, T. D., Baker, D. I., Smith, D. J. & Lopes, S. S. 2016 Three-dimensional flow in Kupffer’s vesicle. J. Math. Biol. 121.Google ScholarPubMed
Sabass, B. & Seifert, U. 2012 Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer. J. Chem. Phys. 136, 064508.CrossRefGoogle ScholarPubMed
Sharifi-Mood, N., Koplik, J. & Maldarelli, C. 2013 Diffusiophoretic self-propulsion of colloids driven by a surface reaction: the sub-micron particle regime for exponential and van der Waals interactions. Phys. Fluids 25, 012001.CrossRefGoogle Scholar
Sleigh, M. A., Blake, J. R. & Liron, N. 1988 The propulsion of mucus by cilia. Am. Rev. Respir. Dis. 137, 726741.CrossRefGoogle ScholarPubMed
Squires, T. M. & Quake, S. R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 9771026.CrossRefGoogle Scholar
Stroock, A. D. & Whitesides, G. M. 2003 Controlling flows in microchannels with patterned surface charge and topography. Acc. Chem. Res. 36, 597604.CrossRefGoogle ScholarPubMed
Uspal, W. E., Popescu, M. N., Dietrich, S. & Tasinkevych, M. 2015 Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering. Soft Matt. 11, 434438.CrossRefGoogle Scholar
Wang, S., Wang, T., Ge, P., Xue, P., Ye, S., Chen, H., Li, Z., Zhang, J. & Yang, B. 2015 Controlling flow behavior of water in microfluidics with a chemically patterned anisotropic wetting surface. Langmuir 31, 40324039.CrossRefGoogle ScholarPubMed
Whitesides, G. M. 2006 The origins and the future of microfluidics. Nature 442, 368373.CrossRefGoogle ScholarPubMed
Yadav, V., Duan, W., Butler, P. J. & Sen, A. 2015 Anatomy of nanoscale propulsion. Annu. Rev. Biophys. 44, 77100.CrossRefGoogle ScholarPubMed
Yang, M., Ripoll, M. & Chen, K. 2015 Catalytic microrotor driven by geometrical asymmetry. J. Chem. Phys. 142, 054902.Google ScholarPubMed