Hostname: page-component-7d684dbfc8-zgpz2 Total loading time: 0 Render date: 2023-09-21T15:12:11.068Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Scaling the propulsive performance of heaving flexible panels

Published online by Cambridge University Press:  05 December 2013

Daniel B. Quinn*
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
George V. Lauder
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
Alexander J. Smits
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Department of Mechanical and Aerospace Engineering, Monash University, Victoria, Australia
Email address for correspondence:


We present an experimental investigation of flexible panels actuated with heave oscillations at their leading edge. Results are presented from kinematic video analysis, particle image velocimetry, and direct force measurements. Both the trailing edge amplitude and the mode shapes of the panel are found to scale with dimensionless parameters originating from the Euler–Bernoulli beam equation. The time-averaged net thrust increases with heaving frequency, but experiences localized boosts near resonant frequencies where the trailing edge amplitude is maximized. These boosts correspond to local maxima in the propulsive efficiency. For a constant heave amplitude, the time-averaged net thrust coefficient is shown to be a function of Strouhal number over a wide range of conditions. It appears, therefore, that self-propelled swimming (zero net thrust) only occurs over a small range of Strouhal numbers. Under these near-constant Strouhal number conditions, the propulsive economy increases with higher flexibilities and slower swimming speeds.

©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alben, S., Witt, C., Baker, T. V., Anderson, E. & Lauder, G. V. 2012 Dynamics of freely swimming flexible foils. Phys. Fluids 24, 051901.CrossRefGoogle Scholar
Allen, J. J. & Smits, A. J. 2001 Energy harvesting eel. J. Fluids Struct. 15, 629640.CrossRefGoogle Scholar
Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.CrossRefGoogle Scholar
Bhalla, A. P. S., Griffith, B. E. & Patankar, N. A. 2013 A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming. PLoS Comput. Biol. 9 (6), e1003097.CrossRefGoogle ScholarPubMed
Buchholz, J. H. J. & Smits, A. J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.CrossRefGoogle Scholar
Daniel, T. L. & Combes, S. A. 2002 Flexible wings and fins: bending by inertial or fluid-dynamic force? Integr. Compar. Biol. 42, 10441049.CrossRefGoogle ScholarPubMed
Dewey, P. A., Boschitch, B. M., Moored, K. W., Stone, H. A. & Smits, A. J. 2013 Scaling laws for the thrust production of flexible pitching panels. J. Fluid Mech. 732, 2946.CrossRefGoogle Scholar
Heathcote, S. & Gursul, I. 2007 Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA 45 (5), 10661079.CrossRefGoogle Scholar
Hultmark, M., Leftwich, M. & Smits, A. J. 2007 Flowfield measurements in the wake of a robotic lamprey. Exp. Fluids 43, 683690.CrossRefGoogle ScholarPubMed
Kang, C. K., Aono, H., Baik, Y. S., Bernal, L. P. & Shyy, W. 2013 Fluid dynamics of pitching of plunging flat plate at intermediate Reynolds numbers. AIAA 51 (2), 315329.CrossRefGoogle Scholar
Kang, C. K., Aono, H., Cesnik, C. E. S. & Shyy, W. 2011 Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 689, 3274.CrossRefGoogle Scholar
Katz, J. & Weihs, D. 1978 Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility. J. Fluid Mech. 88 (3), 485497.CrossRefGoogle Scholar
Lauder, G. V., Lim, J., Shelton, R., Witt, C., Anderson, E. & Tangorra, J. L. 2011 Robotic models for studying undulatory locomotion in fishes. Mar. Technol. Soc. J. 45 (4), 4155.CrossRefGoogle Scholar
Lauder, G. V. & Madden, P. G. A. 2007 Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins. Exp. Fluids 43, 641653.CrossRefGoogle Scholar
Leftwich, M., Tytell, E. D., Cohen, A. H. & Smits, A. J. 2012 Wake structures behind a swimming robotic lamprey. J. Expl Biol. 215, 416425.CrossRefGoogle ScholarPubMed
Lighthill, M. J. 1970 Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44, 265301.CrossRefGoogle Scholar
Low, K. H. 2011 Current and future trends of biologically inspired underwater vehicles. Tech. Rep., Nanyang Technical University.Google Scholar
Michelin, S. & Llewellyn Smith, S. G. 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21, 071902.CrossRefGoogle Scholar
Paulo, J. S., Ferreira de Sousa, A. & Allen, J. J. 2011 Thrust efficiency of harmonically oscillating flexible flat plates. J. Fluid Mech. 674, 4366.Google Scholar
Pederzani, J. & Haj-Hariri, H. 2006 Analysis of heaving flexible airfoils in viscous flow. AIAA 44 (11), 27732779.CrossRefGoogle Scholar
Prempraneerach, P., Hover, F. S. & Triantafyllou, M. S. 2003 The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In Proceedings of the Thirteenth International Symposium on Unmanned Untethered Submersible Technology.Google Scholar
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. USA 108 (15), 59645969.CrossRefGoogle ScholarPubMed
Sciacchitano, A., Wieneke, B. & Scarano, F. 2013 PIV uncertainty quantification by image matching. Meas. Sci. Technol. 24, 045302.CrossRefGoogle Scholar
Spagnolie, S. E., Moret, L., Shelley, M. J. & Zhang, J. 2010 Surprising behaviours in flapping locomotion with passive pitching. Phys. Fluids 22, 041903.CrossRefGoogle Scholar
Stanislas, M., Okamoto, K., Kahler, C. J. & Westerweel, J. 2005 Main results of the second international PIV challenge. Exp. Fluids 39, 170191.CrossRefGoogle Scholar
Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425, 707711.CrossRefGoogle Scholar
Theodorsen, T. 1935 General theory of aerodynamic instability and the mechanism of flutter. Tech. Rep., National Advisory Committee for Aeronautics.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205224.CrossRefGoogle Scholar
Vanella, M., Fitzgerald, T., Preidikman, S., Balaras, E. & Balachandran, B. 2009 Influence of flexibility on the aerodynamic performance of a hovering wing. J. Expl Biol. 212, 95105.CrossRefGoogle Scholar
Weaver, W., Timoshenko, S. P. & Young, D. H. 1990 Vibration Problems in Engineering, 5th edn. Wiley.Google Scholar
Wu, T. Y. 1971 Hydrodynamics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 46 (2), 337355.CrossRefGoogle Scholar
Zhu, Q. 2007 Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA 45 (10), 24482457.CrossRefGoogle Scholar