Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-16T13:09:27.578Z Has data issue: false hasContentIssue false

Surface tension of flowing soap films

Published online by Cambridge University Press:  20 February 2018

Aakash Sane
School of Engineering, Brown University, Providence, RI 02912, USA
Shreyas Mandre
School of Engineering, Brown University, Providence, RI 02912, USA
Ildoo Kim*
School of Engineering, Brown University, Providence, RI 02912, USA
Email address for correspondence:


The surface tension of flowing soap films is measured with respect to the film thickness and the concentration of soap solution. We perform this measurement by measuring the curvature of the nylon wires that bound the soap film channel and use the measured curvature to parametrize the relation between the surface tension and the tension of the wire. We find that the surface tension of our soap films increases when the film is relatively thin or is made of soap solution of low concentration; otherwise, it approaches an asymptotic value of $30~\text{mN}~\text{m}^{-1}$ . A simple adsorption model with only two parameters describes our observations reasonably well. With our measurements, we are also able to estimate the Gibbs elasticity of our soap film.

JFM Rapids
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adami, N. & Caps, H. 2015 Surface tension profiles in vertical soap films. Phys. Rev. E 91 (1), 013007.Google ScholarPubMed
Alberty, R. A. 1995 On the derivation of the Gibbs adsorption equation. Langmuir 11, 35983600.CrossRefGoogle Scholar
Basu, S., Yawar, A., Concha, A. & Bandi, M. M. 2017 On angled bounce-off impact of a drop impinging on a flowing soap film. Fluid Dyn. Res. 49 (6), 065509.CrossRefGoogle Scholar
Couder, Y., Chomaz, J. M. & Rabaud, M. 1989 On the hydrodynamics of soap films. Physica D 37, 384405.Google Scholar
Courbin, L., Marchand, A., Vaziri, A., Ajdari, A. & Stone, H. A. 2006 Impact dynamics for elastic membranes. Phys. Rev. Lett. 97, 244301.CrossRefGoogle ScholarPubMed
Courbin, L. & Stone, H. A. 2006 Impact, puncturing, and the self-healing of soap film. Phys. Fluids 18, 091105.CrossRefGoogle Scholar
Do-Quang, M., Geyl, L., Stemme, G., van der Wijngaart, W. & Amberg, G. 2010 Fluid dynamic behavior of dispensing small droplets through a thin liquid film. Microfluid. Nanofluid. 9, 303311.CrossRefGoogle Scholar
Du Noüy, P. L. 1925 An interfacial tensiometer for universal use. J. Gen. Physiol. 7, 625631.CrossRefGoogle ScholarPubMed
Jun, Y. & Wu, X. L. 2005 Large-scale intermittency in two-dimensional driven turbulence. Phys. Rev. E 72, 035302.Google ScholarPubMed
Jung, S., Mareck, K., Shelley, M. J. & Zhang, J. 2006 Dynamics of a deformable body in a fast flowing soap film. Phys. Rev. Lett. 97, 134502.CrossRefGoogle Scholar
Kellay, H., Wu, X.-L. & Goldburg, W. I. 1995 Experiments with turbulent soap films. Phys. Rev. Lett. 74, 39753978.CrossRefGoogle ScholarPubMed
Kim, I. & Mandre, S. 2017 Marangoni elasticity of flowing soap films. Phys. Rev. Fluids 2 (8), 082001(R).CrossRefGoogle Scholar
Kim, I. & Wu, X. L. 2010 Tunneling of micron-sized droplets through soap films. Phys. Rev. E 82, 026313.Google ScholarPubMed
Kim, I. & Wu, X. L. 2015 Unified Strouhal–Reynolds number relationship for laminar vortex streets generated by different-shaped obstacles. Phys. Rev. E 92 (4), 043011.Google ScholarPubMed
Le Goff, A., Courbin, L., Stone, H. A. & Quere, D. 2008 Energy absorption in a bamboo foam. Europhys. Lett. 84 (3), 36001.CrossRefGoogle Scholar
Lucassen, J., Van den Tempel, M., Vrij, A. & Hesselink, F. 1970 Waves in thin liquid film I. The different modes of vibrations. Proc. K. Ned. Akad. Wet. 73 (2), 109124.Google Scholar
Martin, B. K., Wu, X. L., Goldburg, W. I. & Rutgers, M. A. 1998 Spectra of decaying turbulence in a soap film. Phys. Rev. Lett. 80, 39643967.CrossRefGoogle Scholar
Prins, A., Arcuri, C. & Van den Tempel, M. 1967 Elasticity of thin liquid films. J. Colloid Interface Sci. 24, 8490.CrossRefGoogle Scholar
Rutgers, M. A. 1998 Forced 2D turbulence: experimental evidence of simultaneous inverse energy and forward enstrophy cascades. Phys. Rev. Lett. 81, 22442247.CrossRefGoogle Scholar
Rutgers, M. A., Wu, X. L., Bhagavatula, R., Petersen, A. A. & Goldburg, W. I. 1996 Two-dimensional velocity profiles and laminar boundary layers in flowing soap films. Phys. Fluids 8, 28472854.CrossRefGoogle Scholar
Rutgers, M. A., Wu, X. L. & Daniel, W. B. 2001 Conducting fluid dynamics experiments with vertically falling soap films. Rev. Sci. Instrum. 72, 30253037.CrossRefGoogle Scholar
Salkin, L., Schmit, A., Panizza, P. & Courbin, L. 2016 Generating soap bubbles by blowing on soap films. Phys. Rev. Lett. 116 (7), 077801.CrossRefGoogle ScholarPubMed
Tajima, K., Muramatsu, M. & Sasaki, T. 1970 Radiotracer studies on adsorption of surface active substance at aqueous surface. I. Accurate measurement of adsorption of tritiated sodium dodecylsulfate. Bull. Chem. Soc. Jpn. 43, 19911998.CrossRefGoogle Scholar
Tran, T., Chakraborty, P., Guttenberg, N., Prescott, A., Kellay, H., Goldburg, W. I., Goldenfeld, N. & Gioia, G. 2010 Macroscopic effects of the spectral structure in turbulent flows. Nat. Phys. 6 (6), 438441.CrossRefGoogle Scholar
Vorobieff, P. & Ecke, R. E. 1999 Fluid instabilities and wakes in a soap-film tunnel. Am. J. Phys. 67 (5), 394399.CrossRefGoogle Scholar