Abderrahaman-Elena, N. & Garcia-Mayoral, R.
2017
Analysis of anisotropically permeable surfaces for turbulent drag reduction. Phys. Rev. Fluids
2 (11), 114609.
Balakumar, B. J. & Adrian, R. J.
2007
Large-and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A
365 (1852), 665–681.
Balaras, E.
2004
Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput. Fluids
33 (3), 375–404.
Bale, R., Hao, M., Bhalla, A. P. S., Patel, N. & Patankar, N. A.
2014
Gray’s paradox: a fluid mechanical perspective. Nature: Scientific Reports
4, 5904.
Benschop, H. O. G. & Breugem, W.-P.2017a Oscillatory laminar shear flow over a compliant viscoelastic layer on a rigid base. arXiv:1705.04479 [physics.flu-dyn].
Benschop, H. O. G. & Breugem, W.-P.
2017b
Turbulent drag reduction by compliant coatings: an analytical study. In Book of Abstracts, European Drag Reduction and Flow Control Meeting (EDRFCM), April 3–6, Rome, Italy. ERCOFTAC.
Beratlis, N., Balaras, E. & Kiger, K.
2007
Direct numerical simulations of transitional pulsatile flow through a constriction. J. Fluid Mech.
587, 425–451.
Bushnell, D. M., Hefner, J. N. & Ash, R. L.
1977
Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids
20 (10), S31–S48.
Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C.
1995
A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput.
16 (5), 1190–1208.
Carpenter, P. W. & Garrad, A. D.
1985
The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities. J. Fluid Mech.
155, 465–510.
Carpenter, P. W. & Garrad, A. D.
1986
The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech.
170, 199–232.
Carpenter, P. W., Kudar, K. L., Ali, R., Sen, P. K. & Davies, C.
2007
A deterministic model for the sublayer streaks in turbulent boundary layers for application to flow control. Phil. Trans. R. Soc. Lond. A
365 (1859), 2419–2441.
Carpenter, P. W. & Morris, P. J.
1990
The effect of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid Mech.
218, 171–223.
Choi, H., Moin, P. & Kim, J.
1993
Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech.
255, 503–539.
Choi, H., Moin, P. & Kim, J.
1994
Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech.
262, 75–110.
Choi, K.-S., Yang, X., Clayton, B. R., Glover, E. J., Atlar, M., Semenov, B. N. & Kulik, V. M.
1997
Turbulent drag reduction using compliant surfaces. Proc. R. Soc. Lond. A
453 (1965), 2229–2240.
Davies, C. & Carpenter, P. W.
1997a
Instabilities in a plane channel flow between compliant walls. J. Fluid Mech.
352, 205–243.
Davies, C. & Carpenter, P. W.
1997b
Numerical simulation of the evolution of Tollmien–Schlichting waves over finite compliant panels. J. Fluid Mech.
335, 361–392.
Deng, B.-Q., Xu, C.-X., Huang, W.-X. & Cui, G.-X.
2014
Strengthened opposition control for skin-friction reduction in wall-bounded turbulent flows. J. Turbul.
15 (2), 122–143.
Duncan, J. H.
1986
The response of an incompressible, viscoelastic coating to pressure fluctuations in a turbulent boundary layer. J. Fluid Mech.
171, 339–363.
Endo, T. & Himeno, R.
2002
Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul.
3, N7.
Fish, F. E., Legac, P., Williams, T. M. & Wei, T.
2014
Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV. J. Exp. Biol.
217 (2), 252–260.
Fukagata, K., Iwamoto, K. & Kasagi, N.
2002
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids
14 (11), L73–L76.
Fukagata, K. & Kasagi, N.
2004
Suboptimal control for drag reduction via suppression of near-wall Reynolds shear stress. Intl J. Heat Fluid Flow
25 (3), 341–350.
Fukagata, K., Kern, S., Chatelain, P., Koumoutsakos, P. & Kasagi, N.
2008
Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul.
9, 37–41.
Gad-el-Hak, M.
2002
Compliant coatings for drag reduction. Prog. Aerosp. Sci.
38 (1), 77–99.
Ganapathisubramani, B., Hutchins, N., Monty, J. P., Chung, D. & Marusic, I.
2012
Amplitude and frequency modulation in wall turbulence. J. Fluid Mech.
712, 61–91.
Garcia-Mayoral, R. & Jimenez, J.
2011
Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech.
678, 317–347.
Gray, J.
1936
Studies in animal locomotion VI – the propulsive powers of the dolphin. J. Expl Biol.
13 (2), 192–199.
Hahn, S., Je, J. & Choi, H.
2002
Direct numerical simulation of turbulent channel flow with permeable walls. J. Fluid Mech.
450, 259–285.
Horvath, J. S.
1994
Expanded polystyrene (EPS) geofoam: an introduction to material behavior. Geotextiles Geomembranes
13 (4), 263–280.
Hutchins, N. & Marusic, I.
2007
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.
579, 1–28.
Jiménez, J.
2013
Near-wall turbulence. Phys. Fluids
25 (10), 101302.
Jiménez, J. & Pinelli, A.
1999
The autonomous cycle of near-wall turbulence. J. Fluid Mech.
389, 335–359.
Józsa, T. I.2018 Drag reduction by passive in-plane wall motions in turbulent wall-bounded flows. PhD thesis, University of Edinburgh.
Kim, E. & Choi, H.
2014
Space–time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech.
756, 30–53.
Kireiko, G. V.
1990
Interaction of wall turbulence with a compliant surface. Fluid Dyn.
25 (4), 550–554.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W.
1967
The structure of turbulent boundary layers. J. Fluid Mech.
30 (04), 741–773.
Kraft, D.1988 A software package for sequential quadratic programming Tech. Rep. DFVLR-FB 88-28. German Aerospace Center (DLR) – Institute for Flight Mechanics, Cologne, Germany.
Kramer, M. O.
1957
Boundary layer stabilization by distributed damping. J. Aero. Sci.
24, 459.
Kramer, M. O.
1960
Boundary layer stabilization by distributed damping. J. Amer. Soc. Naval Engrs
72 (1), 25–34.
Kramer, M. O.
1962
Boundary layer stabilization by distributed damping. Naval Engrs J.
74, 341–348.
Lee, C. & Kim, J.
2002
Control of the viscous sublayer for drag reduction. Phys. Fluids
14 (7), 2523.
Lee, M. & Moser, R. D.
2015
Direct numerical simulation of turbulent channel flow up to Re
_{𝜏} ≈ 5200. J. Fluid Mech.
774, 395–415.
Lee, T., Fisher, M. & Schwarz, W. H.
1993a
Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech.
257, 373–401.
Lee, T., Fisher, M. & Schwarz, W. H.
1993b
The measurement of flow-induced surface displacement on a compliant surface by optical holographic interferometry. Exp. Fluids
14 (3), 159–168.
Lee, T., Fisher, M. & Schwarz, W. H.
1995
Investigation of the effects of a compliant surface on boundary-layer stability. J. Fluid Mech.
288, 37–58.
Luhar, M., Sharma, A. S. & McKeon, B. J.
2015
A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech.
768, 415–441.
Mathis, R., Hutchins, N. & Marusic, I.
2009
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech.
628, 311–337.
Min, T., Choi, H. & Yoo, J. Y.
2003
Maximum drag reduction in a turbulent channel flow by polymer additives. J. Fluid Mech.
492, 91–100.
Min, T. & Kim, J.
2004
Effects of hydrophobic surface on skin-friction drag. Phys. Fluids
16 (7), L55–L58.
Nakanishi, R., Mamori, H. & Fukagata, K.
2012
Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Intl J. Heat Fluid Flow
35, 152–159.
Nash, S. G.
1984
Newton-type minimization via the Lanczos method. SIAM J. Numer. Anal.
21 (4), 770–788.
Nocedal, J. & Wright, S. J.
2006
Numerical Optimization. Springer.
Oliver, T. A., Malaya, N., Ulerich, R. & Moser, R. D.
2014
Estimating uncertainties in statistics computed from direct numerical simulation. Phys. Fluids
26 (3), 035101.
Pamiès, M., Garnier, E., Sagaut, P. & Merlen, A.
2008
An improvement of opposition control at high Reynolds numbers. In IUTAM Symposium on Flow Control and MEMS, pp. 243–249. Springer.
Posa, A. & Balaras, E.
2016
A numerical investigation of the wake of an axisymmetric body with appendages. J. Fluid Mech.
792, 470–498.
Quadrio, M. & Ricco, P.
2004
Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech.
521, 251–271.
Ricco, P. & Hahn, S.
2013
Turbulent drag reduction through rotating discs. J. Fluid Mech.
722, 267–290.
Roache, P. J.
1998
Verification and Validation in Computational Science and Engineering, vol. 895. Hermosa Albuquerque.
Rosti, M. E. & Brandt, L.
2017
Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech.
830, 708–735.
Rosti, M. E., Cortelezzi, L. & Quadrio, M.
2015
Direct numerical simulation of turbulent channel flow over porous walls. J. Fluid Mech.
784, 396–442.
Schultz, M. P. & Flack, K. A.
2013
Reynolds-number scaling of turbulent channel flow. Phys. Fluids
25 (2), 025104.
Thirumal, M., Khastgir, D., Singha, N. K., Manjunath, B. S. & Naik, Y. P.
2008
Effect of foam density on the properties of water blown rigid polyurethane foam. J. Appl. Polym. Sci.
108 (3), 1810–1817.
Touber, E. & Leschziner, M. A.
2012
Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech.
693, 150–200.
Trenberth, K. E.
1984
Some effects of finite sample size and persistence on meteorological statistics. Part I. Autocorrelation. Mon. Weath. Rev.
112 (12), 2359–2368.
Van Kan, J.
1986
A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput.
7 (3), 870–891.
Virk, P. S., Merrill, E. W., Mickley, H. S., Smith, K. A. & Mollo-Christensen, E. L.
1967
The Toms phenomenon: turbulent pipe flow of dilute polymer solutions. J. Fluid Mech.
30 (2), 305–328.
Walsh, M. J.
1983
Riblets as a viscous drag reduction technique. AIAA J.
21 (4), 485–486.
Wang, Z., Yeo, K. S. & Khoo, B. C.
2005
Spatial direct numerical simulation of transitional boundary layer over compliant surfaces. Computers Fluids
34 (9), 1062–1095.
Wang, Z., Yeo, K. S. & Khoo, B. C.
2006
On two-dimensional linear waves in Blasius boundary layer over viscoelastic layers. Eur. J. Mech. (B/Fluids)
25 (1), 33–58.
Wise, D. J., Alvarenga, C. & Ricco, P.
2014
Spinning out of control: wall turbulence over rotating discs. Phys. Fluids
26 (12), 125107.
Wise, D. J. & Ricco, P.
2014
Turbulent drag reduction through oscillating discs. J. Fluid Mech.
746, 536–564.
Womersley, J. R.
1955
Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol.
127 (3), 553–563.
Wong, K. V. & Hernandez, A.
2012
A review of additive manufacturing. ISRN Mech. Engng
2012, 208760.
Xia, Q.-J., Huang, W.-X. & Xu, C.-X.
2017
Direct numerical simulation of turbulent boundary layer over a compliant wall. J. Fluids Struct.
71, 126–142.
Xu, S., Rempfer, D. & Lumley, J.
2003
Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech.
478, 11–34.
Yeo, K. S.
1990
The hydrodynamic stability of boundary-layer flow over a class of anisotropic compliant walls. J. Fluid Mech.
220, 125–160.
Zhang, C., Miorini, R. & Katz, J.
2015
Integrating Mach–Zehnder interferometry with TPIV to measure the time-resolved deformation of a compliant wall along with the 3D velocity field in a turbulent channel flow. Exp. Fluids
56 (11), 203.
Zhang, C., Wang, J., Blake, W. & Katz, J.
2017
Deformation of a compliant wall in a turbulent channel flow. J. Fluid Mech.
823, 345–390.
Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J.
1997
Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.
23 (4), 550–560.