Skip to main content Accessibility help
×
Home

Active and passive in-plane wall fluctuations in turbulent channel flows

  • T. I. Józsa (a1) (a2), E. Balaras (a3), M. Kashtalyan (a4), A. G. L. Borthwick (a5) and I. M. Viola (a2)...

Abstract

Compliant walls offer the tantalising possibility of passive flow control. This paper examines the mechanics of compliant surfaces driven by wall shear stresses, with solely in-plane velocity response. We present direct numerical simulations of turbulent channel flows at low ( $Re_{\unicode[STIX]{x1D70F}}\approx 180$ ) and intermediate ( $Re_{\unicode[STIX]{x1D70F}}\approx 1000$ ) Reynolds numbers. In-plane spanwise and streamwise active controls proposed by Choi et al. (J. Fluid Mech., vol. 262, 1994, pp. 75–110) are revisited in order to characterise beneficial wall fluctuations. An analytical framework is then used to map the parameter space of the proposed compliant surfaces. The direct numerical simulations show that large-scale passive streamwise wall fluctuations can reduce friction drag by at least $3.7\pm 1\,\%$ , whereas even small-scale passive spanwise wall motions lead to considerable drag penalty. It is found that a well-designed compliant wall can theoretically exploit the drag-reduction mechanism of an active control; this may help advance the development of practical active and passive control strategies for turbulent friction drag reduction.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Active and passive in-plane wall fluctuations in turbulent channel flows
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Active and passive in-plane wall fluctuations in turbulent channel flows
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Active and passive in-plane wall fluctuations in turbulent channel flows
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Email address for correspondence: tamas.jozsa@eng.ox.ac.uk

References

Hide All
Abderrahaman-Elena, N. & Garcia-Mayoral, R. 2017 Analysis of anisotropically permeable surfaces for turbulent drag reduction. Phys. Rev. Fluids 2 (11), 114609.
Balakumar, B. J. & Adrian, R. J. 2007 Large-and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365 (1852), 665681.
Balaras, E. 2004 Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput. Fluids 33 (3), 375404.
Bale, R., Hao, M., Bhalla, A. P. S., Patel, N. & Patankar, N. A. 2014 Gray’s paradox: a fluid mechanical perspective. Nature: Scientific Reports 4, 5904.
Benschop, H. O. G. & Breugem, W.-P.2017a Oscillatory laminar shear flow over a compliant viscoelastic layer on a rigid base. arXiv:1705.04479 [physics.flu-dyn].
Benschop, H. O. G. & Breugem, W.-P. 2017b Turbulent drag reduction by compliant coatings: an analytical study. In Book of Abstracts, European Drag Reduction and Flow Control Meeting (EDRFCM), April 3–6, Rome, Italy. ERCOFTAC.
Beratlis, N., Balaras, E. & Kiger, K. 2007 Direct numerical simulations of transitional pulsatile flow through a constriction. J. Fluid Mech. 587, 425451.
Bushnell, D. M., Hefner, J. N. & Ash, R. L. 1977 Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids 20 (10), S31S48.
Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. 1995 A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16 (5), 11901208.
Carpenter, P. W. & Garrad, A. D. 1985 The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities. J. Fluid Mech. 155, 465510.
Carpenter, P. W. & Garrad, A. D. 1986 The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech. 170, 199232.
Carpenter, P. W., Kudar, K. L., Ali, R., Sen, P. K. & Davies, C. 2007 A deterministic model for the sublayer streaks in turbulent boundary layers for application to flow control. Phil. Trans. R. Soc. Lond. A 365 (1859), 24192441.
Carpenter, P. W. & Morris, P. J. 1990 The effect of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid Mech. 218, 171223.
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.
Choi, K.-S., Yang, X., Clayton, B. R., Glover, E. J., Atlar, M., Semenov, B. N. & Kulik, V. M. 1997 Turbulent drag reduction using compliant surfaces. Proc. R. Soc. Lond. A 453 (1965), 22292240.
Davies, C. & Carpenter, P. W. 1997a Instabilities in a plane channel flow between compliant walls. J. Fluid Mech. 352, 205243.
Davies, C. & Carpenter, P. W. 1997b Numerical simulation of the evolution of Tollmien–Schlichting waves over finite compliant panels. J. Fluid Mech. 335, 361392.
Deng, B.-Q., Xu, C.-X., Huang, W.-X. & Cui, G.-X. 2014 Strengthened opposition control for skin-friction reduction in wall-bounded turbulent flows. J. Turbul. 15 (2), 122143.
Duncan, J. H. 1986 The response of an incompressible, viscoelastic coating to pressure fluctuations in a turbulent boundary layer. J. Fluid Mech. 171, 339363.
Endo, T. & Himeno, R. 2002 Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul. 3, N7.
Fish, F. E., Legac, P., Williams, T. M. & Wei, T. 2014 Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV. J. Exp. Biol. 217 (2), 252260.
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.
Fukagata, K. & Kasagi, N. 2004 Suboptimal control for drag reduction via suppression of near-wall Reynolds shear stress. Intl J. Heat Fluid Flow 25 (3), 341350.
Fukagata, K., Kern, S., Chatelain, P., Koumoutsakos, P. & Kasagi, N. 2008 Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul. 9, 3741.
Gad-el-Hak, M. 2002 Compliant coatings for drag reduction. Prog. Aerosp. Sci. 38 (1), 7799.
Ganapathisubramani, B., Hutchins, N., Monty, J. P., Chung, D. & Marusic, I. 2012 Amplitude and frequency modulation in wall turbulence. J. Fluid Mech. 712, 6191.
Garcia-Mayoral, R. & Jimenez, J. 2011 Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317347.
Gray, J. 1936 Studies in animal locomotion VI – the propulsive powers of the dolphin. J. Expl Biol. 13 (2), 192199.
Hahn, S., Je, J. & Choi, H. 2002 Direct numerical simulation of turbulent channel flow with permeable walls. J. Fluid Mech. 450, 259285.
Horvath, J. S. 1994 Expanded polystyrene (EPS) geofoam: an introduction to material behavior. Geotextiles Geomembranes 13 (4), 263280.
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Jiménez, J. 2013 Near-wall turbulence. Phys. Fluids 25 (10), 101302.
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.
Józsa, T. I.2018 Drag reduction by passive in-plane wall motions in turbulent wall-bounded flows. PhD thesis, University of Edinburgh.
Kim, E. & Choi, H. 2014 Space–time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 3053.
Kireiko, G. V. 1990 Interaction of wall turbulence with a compliant surface. Fluid Dyn. 25 (4), 550554.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (04), 741773.
Kraft, D.1988 A software package for sequential quadratic programming Tech. Rep. DFVLR-FB 88-28. German Aerospace Center (DLR) – Institute for Flight Mechanics, Cologne, Germany.
Kramer, M. O. 1957 Boundary layer stabilization by distributed damping. J. Aero. Sci. 24, 459.
Kramer, M. O. 1960 Boundary layer stabilization by distributed damping. J. Amer. Soc. Naval Engrs 72 (1), 2534.
Kramer, M. O. 1962 Boundary layer stabilization by distributed damping. Naval Engrs J. 74, 341348.
Lee, C. & Kim, J. 2002 Control of the viscous sublayer for drag reduction. Phys. Fluids 14 (7), 2523.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 ≈ 5200. J. Fluid Mech. 774, 395415.
Lee, T., Fisher, M. & Schwarz, W. H. 1993a Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257, 373401.
Lee, T., Fisher, M. & Schwarz, W. H. 1993b The measurement of flow-induced surface displacement on a compliant surface by optical holographic interferometry. Exp. Fluids 14 (3), 159168.
Lee, T., Fisher, M. & Schwarz, W. H. 1995 Investigation of the effects of a compliant surface on boundary-layer stability. J. Fluid Mech. 288, 3758.
Luhar, M., Sharma, A. S. & McKeon, B. J. 2015 A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415441.
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.
Min, T., Choi, H. & Yoo, J. Y. 2003 Maximum drag reduction in a turbulent channel flow by polymer additives. J. Fluid Mech. 492, 91100.
Min, T. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55L58.
Nakanishi, R., Mamori, H. & Fukagata, K. 2012 Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Intl J. Heat Fluid Flow 35, 152159.
Nash, S. G. 1984 Newton-type minimization via the Lanczos method. SIAM J. Numer. Anal. 21 (4), 770788.
Nocedal, J. & Wright, S. J. 2006 Numerical Optimization. Springer.
Oliver, T. A., Malaya, N., Ulerich, R. & Moser, R. D. 2014 Estimating uncertainties in statistics computed from direct numerical simulation. Phys. Fluids 26 (3), 035101.
Pamiès, M., Garnier, E., Sagaut, P. & Merlen, A. 2008 An improvement of opposition control at high Reynolds numbers. In IUTAM Symposium on Flow Control and MEMS, pp. 243249. Springer.
Posa, A. & Balaras, E. 2016 A numerical investigation of the wake of an axisymmetric body with appendages. J. Fluid Mech. 792, 470498.
Quadrio, M. & Ricco, P. 2004 Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251271.
Ricco, P. & Hahn, S. 2013 Turbulent drag reduction through rotating discs. J. Fluid Mech. 722, 267290.
Roache, P. J. 1998 Verification and Validation in Computational Science and Engineering, vol. 895. Hermosa Albuquerque.
Rosti, M. E. & Brandt, L. 2017 Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech. 830, 708735.
Rosti, M. E., Cortelezzi, L. & Quadrio, M. 2015 Direct numerical simulation of turbulent channel flow over porous walls. J. Fluid Mech. 784, 396442.
Schultz, M. P. & Flack, K. A. 2013 Reynolds-number scaling of turbulent channel flow. Phys. Fluids 25 (2), 025104.
Thirumal, M., Khastgir, D., Singha, N. K., Manjunath, B. S. & Naik, Y. P. 2008 Effect of foam density on the properties of water blown rigid polyurethane foam. J. Appl. Polym. Sci. 108 (3), 18101817.
Touber, E. & Leschziner, M. A. 2012 Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150200.
Trenberth, K. E. 1984 Some effects of finite sample size and persistence on meteorological statistics. Part I. Autocorrelation. Mon. Weath. Rev. 112 (12), 23592368.
Van Kan, J. 1986 A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7 (3), 870891.
Virk, P. S., Merrill, E. W., Mickley, H. S., Smith, K. A. & Mollo-Christensen, E. L. 1967 The Toms phenomenon: turbulent pipe flow of dilute polymer solutions. J. Fluid Mech. 30 (2), 305328.
Walsh, M. J. 1983 Riblets as a viscous drag reduction technique. AIAA J. 21 (4), 485486.
Wang, Z., Yeo, K. S. & Khoo, B. C. 2005 Spatial direct numerical simulation of transitional boundary layer over compliant surfaces. Computers Fluids 34 (9), 10621095.
Wang, Z., Yeo, K. S. & Khoo, B. C. 2006 On two-dimensional linear waves in Blasius boundary layer over viscoelastic layers. Eur. J. Mech. (B/Fluids) 25 (1), 3358.
Wise, D. J., Alvarenga, C. & Ricco, P. 2014 Spinning out of control: wall turbulence over rotating discs. Phys. Fluids 26 (12), 125107.
Wise, D. J. & Ricco, P. 2014 Turbulent drag reduction through oscillating discs. J. Fluid Mech. 746, 536564.
Womersley, J. R. 1955 Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127 (3), 553563.
Wong, K. V. & Hernandez, A. 2012 A review of additive manufacturing. ISRN Mech. Engng 2012, 208760.
Xia, Q.-J., Huang, W.-X. & Xu, C.-X. 2017 Direct numerical simulation of turbulent boundary layer over a compliant wall. J. Fluids Struct. 71, 126142.
Xu, S., Rempfer, D. & Lumley, J. 2003 Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478, 1134.
Yeo, K. S. 1990 The hydrodynamic stability of boundary-layer flow over a class of anisotropic compliant walls. J. Fluid Mech. 220, 125160.
Zhang, C., Miorini, R. & Katz, J. 2015 Integrating Mach–Zehnder interferometry with TPIV to measure the time-resolved deformation of a compliant wall along with the 3D velocity field in a turbulent channel flow. Exp. Fluids 56 (11), 203.
Zhang, C., Wang, J., Blake, W. & Katz, J. 2017 Deformation of a compliant wall in a turbulent channel flow. J. Fluid Mech. 823, 345390.
Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. 1997 Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23 (4), 550560.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
PDF
Supplementary material

Józsa et al. supplementary material
Supplementary figures and tables

 PDF (81 KB)
81 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed