Skip to main content
×
×
Home

Asymptotically based self-similarity solution of the Navier–Stokes equations for a porous tube with a non-circular cross-section

  • M. Bouyges (a1), F. Chedevergne (a1), G. Casalis (a2) and J. Majdalani (a3)
Abstract

This work introduces a similarity solution to the problem of a viscous, incompressible and rotational fluid in a right-cylindrical chamber with uniformly porous walls and a non-circular cross-section. The attendant idealization may be used to model the non-reactive internal flow field of a solid rocket motor with a star-shaped grain configuration. By mapping the radial domain to a circular pipe flow, the Navier–Stokes equations are converted to a fourth-order differential equation that is reminiscent of Berman’s classic expression. Then assuming a small radial deviation from a fixed chamber radius, asymptotic expansions of the three-component velocity and pressure fields are systematically pursued to the second order in the radial deviation amplitude. This enables us to derive a set of ordinary differential relations that can be readily solved for the mean flow variables. In the process of characterizing the ensuing flow motion, the axial, radial and tangential velocities are compared and shown to agree favourably with the simulation results of a finite-volume Navier–Stokes solver at different cross-flow Reynolds numbers, deviation amplitudes and circular wavenumbers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Asymptotically based self-similarity solution of the Navier–Stokes equations for a porous tube with a non-circular cross-section
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Asymptotically based self-similarity solution of the Navier–Stokes equations for a porous tube with a non-circular cross-section
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Asymptotically based self-similarity solution of the Navier–Stokes equations for a porous tube with a non-circular cross-section
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email addresses for correspondence: francois.chedevergne@onera.fr, joe.majdalani@auburn.edu
References
Hide All
Abu-Irshaid E. M., Majdalani J. & Casalis G. 2007 Hydrodynamic stability of rockets with headwall injection. Phys. Fluids 19 (2), 024101.
Akiki M. & Majdalani J. 2016 Compressible integral representation of rotational and axisymmetric rocket flow. J. Fluid Mech. 809, 213239.
Apte S. V. & Yang V. 2003 A large-eddy simulation study of transition and flow instability in a porous-walled chamber with mass injection. J. Fluid Mech. 477, 215225.
Balachandar S., Buckmaster J. D. & Short M. 2001 The generation of axial vorticity in solid-propellant rocket-motor flows. J. Fluid Mech. 429, 283305.
Balakrishnan G., Liñan A. & Williams F. A. 1992 Rotational inviscid flow in laterally burning solid propellant rocket motors. J. Propul. Power 8 (6), 11671176.
Berman A. S. 1953 Laminar flow in channels with porous walls. J. Appl. Phys. 24 (9), 12321235.
Berman A. S. 1958 Laminar flow in an annulus with porous walls. J. Appl. Phys. 29 (1), 7175.
Boyer G., Casalis G. & Estivalèzes J.-L. 2013 Stability and sensitivity analysis in a simplified solid rocket motor flow. J. Fluid Mech. 722, 618644.
Canuto C., Hussaini M. Y., Quarteroni A. M. & Zang T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.
Casalis G., Avalon G. & Pineau J. P. 1998 Spatial instability of planar channel flow with fluid injection through porous walls. Phys. Fluids 10 (10), 25582568.
Chedevergne F., Casalis G. & Féraille T. 2006 Biglobal linear stability analysis of the flow induced by wall injection. Phys. Fluids 18 (1), 014103.
Chedevergne F., Casalis G. & Majdalani J. 2012 Direct numerical simulation and biglobal stability investigations of the gaseous motion in solid rocket motors. J. Fluid Mech. 706, 190218.
Cox S. M. 1991 Two-dimensional flow of a viscous fluid in a channel with porous walls. J. Fluid Mech. 227, 133.
Cox S. M. & King A. C. 1997 On the asymptotic solution of a high-order nonlinear ordinary differential equation. Proc. R. Soc. Lond. A 453 (1959), 711728.
Culick F. E. C. 1966 Rotational axisymmetric mean flow and damping of acoustic waves in a solid propellant rocket. AIAA J. 4 (8), 14621464.
Dunlap R., Blackner A. M., Waugh R. C., Brown R. S. & Willoughby P. G. 1990 Internal flow field studies in a simulated cylindrical port rocket chamber. J. Propul. Power 6 (6), 690704.
Fabignon Y., Dupays J., Avalon G., Vuillot F., Lupoglazoff N., Casalis G. & Prévost M. 2003 Instabilities and pressure oscillations in solid rocket motors. J. Aerosp. Sci. Technol. 7 (3), 191200.
Féraille T. & Casalis G. 2003 Channel flow induced by wall injection of fluid and particles. Phys. Fluids 15 (2), 348360.
Fischbach S. R., Majdalani J. & Flandro G. A. 2007 Acoustic instability of the slab rocket motor. J. Propul. Power 23 (1), 146157.
Flandro G. A., Fischbach S. R. & Majdalani J. 2007 Nonlinear rocket motor stability prediction: limit amplitude, triggering, and mean pressure shift. Phys. Fluids 19 (9), 094101.
Flandro G. A. & Majdalani J. 2003 Aeroacoustic instability in rockets. AIAA J. 41 (3), 485497.
Gazanion B., Chedevergne F. & Casalis G. 2014 On the laminar–turbulent transition in injection-driven porous chambers. Exp. Fluids 55 (1), 1643.
Griffond J. & Casalis G. 2000 On the dependence on the formulation of some nonparallel stability approaches applied to the Taylor flow. Phys. Fluids 12 (2), 466468.
Hiemenz K. 1911 Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dingler’s Polytechn. J. 326 (22), 344348.
Kurdyumov V. N. 2006 Steady flows in the slender, noncircular, combustion chambers of solid propellants rockets. AIAA J. 44 (12), 29792986.
Lu C. 1994 On the existence of multiple solutions of a boundary value problem arising from laminar flow through a porous pipe. Can. Appl. Math. Q. 2 (3), 361393.
Lu C. 1997 On the asymptotic solution of laminar channel flow with large suction. SIAM J. Math. Anal. 28 (5), 11131134.
Maicke B. A. & Majdalani J. 2008 On the rotational compressible Taylor flow in injection-driven porous chambers. J. Fluid Mech. 603, 391411.
Majdalani J. 2007 On steady rotational high speed flows: the compressible Taylor–Culick profile. Proc. R. Soc. Lond. A 463 (2077), 131162.
Majdalani J. 2009 Multiple asymptotic solutions for axially travelling waves in porous channels. J. Fluid Mech. 636, 5989.
Majdalani J. & Akiki M. 2010 Rotational and quasiviscous cold flow models for axisymmetric hybrid propellant chambers. Trans. ASME J. Fluids Engng 132 (10), 101202.
Majdalani J., Fischbach S. R. & Flandro G. A. 2006 Improved energy normalization function in rocket motor stability calculations. J. Aerosp. Sci. Technol. 10 (6), 495500.
Majdalani J. & Flandro G. A. 2002 The oscillatory pipe flow with arbitrary wall injection. Proc. R. Soc. Lond. A 458 (2023), 16211651.
Majdalani J., Flandro G. A. & Fischbach S. R. 2005 Some rotational corrections to the acoustic energy equation in injection-driven enclosures. Phys. Fluids 17 (7), 0741021.
Majdalani J. & Saad T. 2007 The Taylor–Culick profile with arbitrary headwall injection. Phys. Fluids 19 (9), 093601.
Majdalani J., Vyas A. B. & Flandro G. A. 2002 Higher mean-flow approximation for solid rocket motors with radially regressing walls. AIAA J. 40 (9), 17801788.
Majdalani J., Vyas A. B. & Flandro G. A. 2009 Erratum on ‘Higher mean-flow approximation for solid rocket motors with radially regressing walls’. AIAA J. 47 (1), 286.
Proudman I. 1960 An example of steady laminar flow at large Reynolds number. J. Fluid Mech. 9 (4), 593602.
Refloch A., Courbet B., Murrone A., Villedieu P., Laurent C., Gilbank P., Troyes J., Tessé L., Chaineray G., Dargaud J. B. et al. 2011 CEDRE software. AerospaceLab (2), 110.
Saad T. & Majdalani J. 2010 On the Lagrangian optimization of wall-injected flows: from the Hart–McClure potential to the Taylor–Culick rotational motion. Proc. R. Soc. Lond. A 466 (2114), 331362.
Saad T., Sams O. C. & Majdalani J. 2006 Rotational flow in tapered slab rocket motors. Phys. Fluids 18 (1), 103601.
Sabnis J. S., Gibeling H. J. & McDonald H. 1989 Navier–Stokes analysis of solid propellant rocket motor internal flows. J. Propul. Power 5 (6), 657664.
Sams O. C., Majdalani J. & Saad T. 2007 Mean flow approximations for solid rocket motors with tapered walls. J. Propul. Power 23 (2), 445456.
Sellars J. R. 1955 Laminar flow in channels with porous walls at high suction Reynolds numbers. J. Appl. Phys. 26 (4), 489490.
Taylor G. I. 1956 Fluid flow in regions bounded by porous surfaces. Proc. R. Soc. Lond. A 234 (1199), 456475.
Terrill R. M. & Shrestha G. M. 1965 Laminar flow through parallel and uniformly porous walls of different permeability. Z. Angew. Math. Phys. 16 (4), 470482.
Terrill R. M. & Thomas P. W. 1969 On laminar flow through a uniformly porous pipe. Appl. Sci. Res. 21 (1), 3767.
Van Horn E. M. & Majdalani J.2014 Extension of the Taylor–Culick profile to rockets with noncircular grain perforations. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH. AIAA Paper 2014-4018.
Venugopal P., Moser R. D. & Najjar F. M. 2008 Direct numerical simulation of turbulence in injection-driven plane channel flows. Phys. Fluids 20 (10), 105103.
Watson E. B. B., Banks W. H. H., Zaturska M. B. & Drazin P. G. 1990 On transition to chaos in two-dimensional channel flow symmetrically driven by accelerating walls. J. Fluid Mech. 212 (1), 451485.
Yamada K., Goto M. & Ishikawa N. 1976 Simulative study on the erosive burning of solid rocket motors. AIAA J. 14 (9), 11701176.
Zaturska M. B., Drazin P. G. & Banks W. H. H. 1988 On the flow of a viscous fluid driven along a channel by suction at porous walls. Fluid Dyn. Res. 4 (3), 151178.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 114 *
Loading metrics...

Abstract views

Total abstract views: 224 *
Loading metrics...

* Views captured on Cambridge Core between 3rd August 2017 - 16th January 2018. This data will be updated every 24 hours.