Skip to main content

Axisymmetric simulation of viscoelastic filament thinning with the Oldroyd-B model

  • Emre Turkoz (a1), Jose M. Lopez-Herrera (a2), Jens Eggers (a3), Craig B. Arnold (a1) and Luc Deike (a1) (a4)...

A fundamental understanding of the filament thinning of viscoelastic fluids is important in practical applications such as spraying and printing of complex materials. Here, we present direct numerical simulations of the two-phase axisymmetric momentum equations using the volume-of-fluid technique for interface tracking and the log-conformation transformation to solve the viscoelastic constitutive equation. The numerical results for the filament thinning are in excellent agreement with the theoretical description developed with a slender body approximation. We show that the off-diagonal stress component of the polymeric stress tensor is important and should not be neglected when investigating the later stages of filament thinning. This demonstrates that such numerical methods can be used to study details not captured by the one-dimensional slender body approximation, and pave the way for numerical studies of viscoelastic fluid flows.

Corresponding author
Email address for correspondence:
Hide All
Anna, S. L. & McKinley, G. H. 2001 Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol. 45 (1), 115138.
Ardekani, A. M., Sharma, V. & McKinley, G. H. 2010 Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets. J. Fluid. Mech. 665, 4656.
Balci, N., Thomases, B., Renardy, M. & Doering, C. R. 2011 Symmetric factorization of the conformation tensor in viscoelastic fluid models. J. Non-Newtonian Fluid Mech. 166 (11), 546553.
Basaran, O. A., Gao, H. & Bhat, P. P. 2013 Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85113.
Bazilevskii, A. V., Entov, V. M., Lerner, M. M. & Rozhkov, A. N. 1997 Failure of polymer solution filaments. Polymer Science Series Vysokomolekuliarnye Soedineniia 39, 316324.
Bhat, P. P., Appathurai, S., Harris, M. T., Pasquali, M., McKinley, G. H. & Basaran, O. A. 2010 Formation of beads-on-a-string structures during break-up of viscoelastic filaments. Nat. Phys. 6 (8), 625631.
Bousfield, D. W., Keunings, R., Marrucci, G. & Denn, M. M. 1986 Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J. Non-Newtonian Fluid Mech. 21 (1), 7997.
Chang, H.-C., Demekhin, E. A. & Kalaidin, E 1999 Iterated stretching of viscoelastic jets. Phys. Fluids 11 (7), 17171737.
Clasen, C., Eggers, J., Fontelos, M. A., Li, J. & McKinley, G. H. 2006 The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283308.
Dealy, J. M. 2010 Weissenberg and Deborah numbers – their definition and use. Rheol. Bull. 79 (2), 1418.
Deike, L., Ghabache, E., Liger-Belair, G., Das, A. K., Zaleski, S., Popinet, S. & Séon, T. 2018 Dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3 (1), 013603.
Deike, L., Melville, W. K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.
Eggers, J. 2014 Instability of a polymeric thread. Phys. Fluids 26 (3), 033106.
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Progr. Phys. 71 (3), 036601.
Étienne, J., Hinch, E. J. & Li, J. 2006 A Lagrangian–Eulerian approach for the numerical simulation of free-surface flow of a viscoelastic material. J. Non-Newtonian Fluid Mech. 136 (2–3), 157166.
Fattal, R. & Kupferman, R. 2005 Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126 (1), 2337.
Hao, J. & Pan, T.-W. 2007 Simulation for high Weissenberg number: viscoelastic flow by a finite element method. Appl. Math. Lett. 20 (9), 988993.
Harlen, O. G., Rallison, J. M. & Szabo, P. 1995 A split Lagrangian–Eulerian method for simulating transient viscoelastic flows. J. Non-Newtonian Fluid Mech. 60 (1), 81104.
Haward, S. J., Oliveira, M. S. N., Alves, M. A. & McKinley, G. H. 2012 Optimized cross-slot flow geometry for microfluidic extensional rheometry. Phys. Rev. Lett. 109 (12), 128301.
Howland, C. J., Antkowiak, A., Castrejón-Pita, J. R., Howison, S. D., Oliver, J. M., Style, R. W. & Castrejón-Pita, A. A. 2016 It’s harder to splash on soft solids. Phys. Rev. Lett. 117 (18), 184502.
Hulsen, M. A., Fattal, R. & Kupferman, R. 2005 Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J. Non-Newtonian Fluid Mech. 127 (1), 2739.
Keunings, R. 1986 On the high Weissenberg number problem. J. Non-Newtonian Fluid Mech. 20, 209226.
Li, J. & Fontelos, M. A. 2003 Drop dynamics on the beads-on-string structure for viscoelastic jets: a numerical study. Phys. Fluids 15 (4), 922937.
Lopez-Herrera, J. M., Popinet, S. & Castrejón-Pita, A. A.2018 An adaptive solver for viscoelastic incompressible two-phase problems applied to the study of the splashing of slightly viscoelastic droplets. arXiv:1807.00103.
Morrison, N. F. & Harlen, O. G. 2010 Viscoelasticity in inkjet printing. Rheol. Acta 49 (6), 619632.
Popinet, S. 2015 A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336358.
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50 (1), 4975.
Renardy, M. 2000 Asymptotic structure of the stress field in flow past a cylinder at high Weissenberg number. J. Non-Newtonian Fluid Mech. 90 (1), 1323.
Sattler, R., Wagner, C. & Eggers, J. 2008 Blistering pattern and formation of nanofibers in capillary thinning of polymer solutions. Phys. Rev. Lett. 100 (16), 164502.
Turkoz, E., Perazzo, A., Kim, H., Stone, H. A. & Arnold, C. B. 2018 Impulsively induced jets from viscoelastic films for high-resolution printing. Phys. Rev. Lett. 120 (7), 074501.
Wagner, C., Amarouchene, Y., Bonn, D. & Eggers, J. 2005 Droplet detachment and satellite bead formation in viscoelastic fluids. Phys. Rev. Lett. 95 (16), 164504.
Yao, M. & McKinley, G. H. 1998 Numerical simulation of extensional deformations of viscoelastic liquid bridges in filament stretching devices. J. Non-Newtonian Fluid Mech. 74 (1–3), 4788.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed