Skip to main content Accesibility Help
×
×
Home

Bubble cloud dynamics in an ultrasound field

  • Kazuki Maeda (a1) and Tim Colonius (a1)
Abstract

The dynamics of bubble clouds induced by high-intensity focused ultrasound is investigated in a regime where the cloud size is similar to the ultrasound wavelength. High-speed images show that the cloud is asymmetric; the bubbles nearest the source grow to a larger radius than the distal ones. Similar structures of bubble clouds are observed in numerical simulations that mimic the laboratory experiment. To elucidate the structure, a parametric study is conducted for plane ultrasound waves with various amplitudes and diffuse clouds with different initial void fractions. Based on an analysis of the kinetic energy of liquid induced by bubble oscillations, a new scaling parameter is introduced to characterize the dynamics. The new parameter generalizes the cloud interaction parameter originally introduced by d’Agostino & Brennen (J. Fluid Mech., vol. 199, 1989, pp. 155–176). The dynamic interaction parameter controls the energy localization and consequent anisotropy of the cloud. Moreover, the amplitude of the far-field, bubble-scattered acoustics is likewise correlated with the proposed parameter. Findings of the present study not only shed light on the physics of cloud cavitation, but may also be of use for the quantification of the effects of cavitation on outcomes of ultrasound therapies including high-intensity focused ultrasound-based lithotripsy.

Copyright
Corresponding author
Present address: Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA. Email address for correspondence: kazuki.e.maeda@gmail.com
References
Hide All
Ando, K., Colonius, T. & Brennen, C. E. 2011 Numerical simulation of shock propagation in a polydisperse bubbly liquid. Intl J. Multiphase Flow 37 (6), 596608.
Arora, M., Ohl, C.-D. & Lohse, D. 2007 Effect of nuclei concentration on cavitation cluster dynamics. J. Acoust. Soc. Am. 121 (6), 34323436.
Bailey, M. R., McAteer, J. A., Pishchalnikov, Y. A., Hamilton, M. F. & Colonius, T. 2006 Progress in lithotripsy research. Acoust. Today 2 (2), 1829.
Biesheuvel, A. & vanWijngaarden, L. 1984 Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J. Fluid Mech. 148, 301318.
Bremond, N., Arora, M., Ohl, C.-D. & Lohse, D. 2006 Controlled multibubble surface cavitation. Phys. Rev. Lett. 96, 224501.
Brennen, C. E. 2002 Fission of collapsing cavitation bubbles. J. Fluid Mech. 472, 153166.
Caflisch, R. E., Miksis, M. J., Papanicolaou, G. C. & Ting, L. 1985 Effective equations for wave propagation in bubbly liquids. J. Fluid Mech. 153, 259273.
Canney, M. S., Bailey, M. R., Crum, L. A., Khokhlova, V. A. & Sapozhnikov, O. A. 2008 Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach. J. Acoust. Soc. Am. 124 (4), 24062420.
Carstensen, E. L. & Foldy, L. L. 1947 Propagation of sound through a liquid containing bubbles. J. Acoust. Soc. Am. 19 (3), 481501.
Cash, J. R. & Karp, A. H. 1990 A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans. Math. Softw. 16 (3), 201222.
Chahine, G. L. 1983 Cloud cavitation: theory. In Proc. 14th Symp. on Naval Hydrodynamics, Washington, DC, USA, pp. 165194.
Coleman, A. J., Saunders, J. E., Crum, L. A. & Dyson, M. 1987 Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med. Biol. 13 (2), 6976.
Commander, K. W. & Prosperetti, A. 1989 Linear pressure waves in bubbly liquids: comparison between theory and experiments. J. Acoust. Soc. Am. 85 (2), 732746.
Coralic, V. & Colonius, T. 2014 Finite-volume WENO scheme for viscous compressible multicomponent flows. J. Comput. Phys. 274, 95121.
d’Agostino, L. & Brennen, C. E. 1989 Linearized dynamics of spherical bubble clouds. J. Fluid Mech. 199, 155176.
Doinikov, A. A. 2004 Mathematical model for collective bubble dynamics in strong ultrasound fields. J. Acoust. Soc. Am. 116 (2), 821827.
Fuster, D. & Colonius, T. 2011 Modelling bubble clusters in compressible liquids. J. Fluid Mech. 688, 352389.
Ikeda, T., Yoshizawa, S., Masataka, T., Allen, J. S., Takagi, S., Ohta, N., Kitamura, T. & Matsumoto, Y. 2006 Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ultrasound Med. Biol. 32 (9), 13831397.
Ilinskii, Y. A., Hamilton, M. F. & Zabolotskaya, E. A. 2007 Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics. J. Acoust. Soc. Am. 121 (2), 786795.
Ishimaru, A. 1978 Wave Propagation and scattering in Random Media, vol. 2. Academic Press.
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.
Kameda, M. & Matsumoto, Y. 1996 Shock waves in a liquid containing small gas bubbles. Phys. Fluids 8 (2), 322335.
Keller, J. B. & Miksis, M. 1980 Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68 (2), 628633.
Lu, Y., Katz, J. & Prosperetti, A. 2013 Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam. Phys. Fluids 25 (7), 073301.
Ma, J., Chahine, G. L. & Hsiao, C.-T. 2015 Spherical bubble dynamics in a bubbly medium using an Euler–Lagrange model. Chem. Engng Sci. 128, 6481.
Ma, J., Hsiao, C. H. & Chahine, G. L. 2018 Numerical study of acoustically driven bubble cloud dynamics near a rigid wall. Ultrasonics Sonochem. 40 (Part A), 944954.
Maeda, K. & Colonius, T. 2017 A source term approach for generation of one-way acoustic waves in the Euler and Navier–Stokes equations. Wave Motion 75, 3649.
Maeda, K. & Colonius, T. 2018 Eulerian–Lagrangian method for simulation of cloud cavitation. J. Comput. Phys. 371, 9941017.
Maeda, K., Kreider, W., Maxwell, A., Cunitz, B., Colonius, T. & Bailey, M. 2015 Modeling and experimental analysis of acoustic cavitation bubbles for burst wave lithotripsy. J. Phys.: Conf. Ser. 656 (1), 012027.
Matsumoto, Y., Allen, J. S., Yoshizawa, S., Ikeda, T. & Kaneko, Y. 2005 Medical ultrasound with microbubbles. Exp. Therm. Fluid Sci. 29 (3), 255265.
Matsumoto, Y. & Yoshizawa, S. 2005 Behaviour of a bubble cluster in an ultrasound field. Intl J. Numer. Meth. Fluids 47 (6–7), 591601.
Maxwell, A. D., Cunitz, B. W., Kreider, W., Sapozhnikov, O. A., Hsi, R. S., Harper, J. D., Bailey, M. R. & Sorensen, M. D. 2015 Fragmentation of urinary calculi in vitro by burst wave lithotripsy. J. Urol. 193 (1), 338344.
McAteer, J. A., Bailey, M. R., Williams, J. C. Jr, Cleveland, R. O. & Evan, A. P. 2005 Strategies for improved shock wave lithotripsy. Minerva urologica e nefrologica = The Italian Journal of Urology and Nephrology 57 (4), 271287.
Menikoff, R. & Plohr, B. J. 1989 The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61 (1), 75.
Miller, D. L., Smith, N. B., Bailey, M. R., Czarnota, G. J., Hynynen, K., Makin, I. R. S.& of the American Institute of Ultrasound in Medicine, Bioeffects Committee 2012 Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 31 (4), 623634.
Mørch, K. A. 1980 On the collapse of cavity clusters in flow cavitation. In Cavitation and Inhomogeneities in Underwater Acoustics, pp. 95100. Springer.
Mørch, K. A. 1982 Energy considerations on the collapse of cavity clusters. In Mechanics and Physics of Bubbles in Liquids, pp. 313321. Springer.
Omta, R. 1987 Oscillations of a cloud of bubbles of small and not so small amplitude. J. Acoust. Soc. Am. 82 (3), 10181033.
Pishchalnikov, Y. A., Sapozhnikov, O. A., Bailey, M. R., Williams, J. C. Jr, Cleveland, R. O., Colonius, T., Crum, L. A., Evan, A. P. & McAteer, J. A. 2003 Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J. Endourol. 17 (7), 435446.
Preston, A. T., Colonius, T. & Brennen, C. E. 2007 A reduced-order model of diffusive effects on the dynamics of bubbles. Phys. Fluids 19, 123302.
Prosperetti, A., Crum, L. A. & Commander, K. W. 1988 Nonlinear bubble dynamics. J. Acoust. Soc. Am. 83 (2), 502514.
Rasthofer, U., Wermelinger, F., Hadijdoukas, P. & Koumoutsakos, P. 2017 Large scale simulation of cloud cavitation collapse. Procedia Comput. Sci. 108 (Supplement C), 17631772.
Reisman, G. E., Wang, Y.-C. & Brennen, C. E. 1998 Observations of shock waves in cloud cavitation. J. Fluid Mech. 355, 255283.
Rossinelli, D., Hejazialhosseini, B., Hadjidoukas, P., Bekas, C., Curioni, A., Bertsch, A., Futral, S., Schmidt, S. J., Adams, N. A. & Koumoutsakos, P. 2013 11 pflop/s simulations of cloud cavitation collapse. In SC ’13 Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 113. IEEE.
Shimada, M., Matsumoto, Y. & Kobayashi, T. 2000 Influence of the nuclei size distribution on the collapsing behavior of the cloud cavitation. JSME Intl J. B 43 (3), 380385.
Shyue, K.-M. 1998 An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142 (1), 208242.
Stride, E. P. & Coussios, C. C. 2010 Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc. Inst. Mech. Engrs H: J. Engng Med. 224 (2), 171191.
Takahira, H., Akamatsu, A. & Fujikawa, S. 1994 Dynamics of a cluster of bubbles in a liquid: theoretical analysis. JSME Intl J. B 37 (2), 297305.
Tanguay, M.2003 Computation of bubbly cavitating flow in shock wave lithotripsy. PhD thesis, California Institute of Technology; http://resolver.caltech.edu/CaltechETD:etd-05282004-130028.
Tiwari, A., Pantano, C. & Freund, J. B. 2015 Growth-and-collapse dynamics of small bubble clusters near a wall. J. Fluid Mech. 775, 123.
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.
vanWijngaarden, L. 1968 On the equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33 (3), 465474.
Wang, Y.-C. & Brennen, C. E. 1994 Shock wave development in the collapse of a cloud of bubbles. In Cavitation and Multiphase Flow, pp. 1519. American Society of Mechanical Engineers.
Wang, Y.-C. & Brennen, C. E. 1999 Numerical computation of shock waves in a spherical cloud of cavitation bubbles. Trans. ASME J. Fluids Engng 121 (4), 872880.
Yoshizawa, S., Ikeda, T., Ito, A., Ota, R., Takagi, S. & Matsumoto, Y. 2009 High intensity focused ultrasound lithotripsy with cavitating microbubbles. Med. Biol. Engng Comput. 47 (8), 851860.
Zeravcic, Z., Lohse, D. & Van Saarloos, W. 2011 Collective oscillations in bubble clouds. J. Fluid Mech. 680, 114149.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed