Skip to main content
    • Aa
    • Aa

Carbon dioxide dissolution in structural and stratigraphic traps

  • M. L. Szulczewski (a1), M. A. Hesse (a2) and R. Juanes (a1)

The geologic sequestration of carbon dioxide ( CO2) in structural and stratigraphic traps is a viable option to reduce anthropogenic emissions. While dissolution of the CO2 stored in these traps reduces the long-term leakage risk, the dissolution process remains poorly understood in systems that reflect the appropriate subsurface geometry. Here, we study dissolution in a porous layer that exhibits a feature relevant for CO2 storage in structural and stratigraphic traps: a finite CO2 source along the top boundary that extends only part way into the layer. This feature represents the finite extent of the interface between free-phase CO2 pooled in a trap and the underlying brine. Using theory and simulations, we describe the dissolution mechanisms in this system for a wide range of times and Rayleigh numbers, and classify the behaviour into seven regimes. For each regime, we quantify the dissolution flux numerically and model it analytically, with the goal of providing simple expressions to estimate the dissolution rate in real systems. We find that, at late times, the dissolution flux decreases relative to early times as the flow of unsaturated water to the CO2 source becomes constrained by a lateral exchange flow though the reservoir. Application of the models to several representative reservoirs indicates that dissolution is strongly affected by the reservoir properties; however, we find that reservoirs with high permeabilities ( $k\geq 1$ Darcy) that are tens of metres thick and several kilometres wide could potentially dissolve hundreds of megatons of CO2 in tens of years.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

U. M. Ascher , S. J. Ruuth & R. J. Spiteri 1997 Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Maths 25, 151167.

S. Backhaus , K. Turitsyn & R. E. Ecke 2011 Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry. Phys. Rev. Lett. 106, 104501.

J. Bear 1972 Dynamics of Fluids in Porous Media. Elsevier, reprinted with corrections by Dover, 1988.

S. M. Benson & D. R. Cole 2008 ${\mathrm{CO} }_{2} $ sequestration in deep sedimentary formations. Elements 4 (5), 325331.

L. Chiaramonte , M. D. Zoback , J. Friedmann & V. Stamp 2008 Seal integrity and feasibility of ${\mathrm{CO} }_{2} $ sequestration in the Teapot Dome EOR pilot: geomechanical site characterization. Environ. Geol. 54 (8), 16671675.

J. W. Elder 1967 Transient convection in a porous medium. J. Fluid Mech. 27 (3), 609623.

J. Ennis-King , I. Preston & L. Paterson 2005 Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids 17, 084107.

J. R. Grasso 1992 Mechanics of seismic instabilities induced by the recovery of hydrocarbons. Pure Appl. Geophys. 139 (3/4), 507534.

H. Hassanzadeh , M. Pooladi-Darvish & D. W. Keith 2007 Scaling behaviour of convective mixing, with application to geological storage of ${\mathrm{CO} }_{2} $. AIChE J. 53 (5), 11211131.

D. R. Hewitt , J. A. Neufeld & J. R. Lister 2013 Convective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech. 719, 551586.

J. J. Hidalgo , J. Fe , L. Cueto-Felgueroso & R. Juanes 2012 Scaling of convective mixing in porous media. Phys. Rev. Lett. 109, 264503.

H. E. Huppert & A. W. Woods 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 5569.

T. J. Kneafsey & K. Pruess 2010 Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transp. Porous Med. 82, 123139.

K. S. Lackner 2003 A guide to ${\mathrm{CO} }_{2} $ sequestration. Science 300 (5626), 16771678.

R. J. LeVeque 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

C. W. MacMinn & R. Juanes 2013 Buoyant currents arrested by convective dissolution. Geophys. Res. Lett. 40 (10), 20172022.

S. A. Mathias , P. E. Hardisty , M. R. Trudell & R. W. Zimmerman 2009 Screening and selection of sites for ${\mathrm{CO} }_{2} $ sequestration based on pressure buildup. Intl J. Greenh. Gas Control 3, 577585.

K. Michael , A. Golab , V. Shulakova , J. Ennis-King , G. Allinson , S. Sharma & T. Aiken 2010 Geological storage of ${\mathrm{CO} }_{2} $ in saline aquifers: a review of the experience from existing storage operations. Intl J. Greenh. Gas Control 4, 659667.

S. Mito , Z. Xue & T. Sato 2013 Effect of formation water composition on predicting ${\mathrm{CO} }_{2} $ behaviour: a case study at the Nagaoka post-injection monitoring site. Appl. Geochem. 30, 3340.

J. A. Neufeld , M. A. Hesse , A. Riaz , M. A. Hallworth , H. A. Tchelepi & H. E. Huppert 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37, L22404.

D. A. Nield & A. Bejan 2013 Convection in Porous Media, 4th edn. Springer.

F. M. Jr. Orr 2009 Onshore geologic storage of ${\mathrm{CO} }_{2} $. Science 325, 16561658.

G. S. H. Pau , J. B. Bell , K. Pruess , A. S. Almgren , M. J. Lijewskia & K. Zhang 2010 High-resolution simulation and characterization of density-driven flow in ${\mathrm{CO} }_{2} $ storage in saline aquifers. Adv. Water Resour. 33 (4), 443455.

S. Rapaka , S. Chen , R. Pawar , P. Stauffer & D. Zhang 2008 Non-modal growth of perturbations in density-driven convection in porous media. J. Fluid Mech. 609, 285303.

A. Riaz , M. Hesse , H. A. Tchelepi & F. M. Jr. Orr 2006 Onset of convection in a gravitationally unstable, diffusive boundary layer in porous media. J. Fluid Mech. 548, 87111.

J. Rutqvist & C. Tsang 2002 A study of caprock hydromechanical changes associated with ${\mathrm{CO} }_{2} $-injection into a brine formation. Environ. Geol. 42, 296305.

D. P. Schrag 2007 Preparing to capture carbon. Science 315, 812813.

A. C. Slim , M. M. Bandi , J. C. Miller & L. Mahadevan 2013 Dissolution-driven convection in a Hele-Shaw cell. Phys. Fluids 25, 024101.

A. C. Slim & T. S. Ramakrishnan 2010 Onset and cessation of time-dependent, dissolution-driven convection in porous media. Phys. Fluids 22, 124103.

M. L. Szulczewski & R. Juanes 2013 The evolution of miscible gravity currents in horizontal porous layers. J. Fluid Mech. 719, 8296.

M. L. Szulczewski , C. W. MacMinn , H. J. Herzog & R. Juanes 2012 Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc. Natl Acad. Sci. USA 109 (14), 51855189.

J. Underschultz , C. Boreham , T. Dance , L. Stalker , B. Freifeld , D. Kirste & J. Ennis-King 2011 ${\mathrm{CO} }_{2} $ storage in a depleted gas field: an overview of the CO2CRC Otway Project and initial results. Intl J. Greenh. Gas Control 5, 922932.

R. A. Wooding , S. W. Tyler & I. White 1997a Convection in groundwater below an evaporating salt lake. Part 1. Onset of instability. Water Resour. Res. 33 (6), 11991217.

X. Xu , S. Chen & D. Zhang 2006 Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Adv. Water Resour. 29, 397407.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 139 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd June 2017. This data will be updated every 24 hours.