Skip to main content

Carbon dioxide dissolution in structural and stratigraphic traps

  • M. L. Szulczewski (a1), M. A. Hesse (a2) and R. Juanes (a1)

The geologic sequestration of carbon dioxide ( CO2) in structural and stratigraphic traps is a viable option to reduce anthropogenic emissions. While dissolution of the CO2 stored in these traps reduces the long-term leakage risk, the dissolution process remains poorly understood in systems that reflect the appropriate subsurface geometry. Here, we study dissolution in a porous layer that exhibits a feature relevant for CO2 storage in structural and stratigraphic traps: a finite CO2 source along the top boundary that extends only part way into the layer. This feature represents the finite extent of the interface between free-phase CO2 pooled in a trap and the underlying brine. Using theory and simulations, we describe the dissolution mechanisms in this system for a wide range of times and Rayleigh numbers, and classify the behaviour into seven regimes. For each regime, we quantify the dissolution flux numerically and model it analytically, with the goal of providing simple expressions to estimate the dissolution rate in real systems. We find that, at late times, the dissolution flux decreases relative to early times as the flow of unsaturated water to the CO2 source becomes constrained by a lateral exchange flow though the reservoir. Application of the models to several representative reservoirs indicates that dissolution is strongly affected by the reservoir properties; however, we find that reservoirs with high permeabilities ( $k\geq 1$ Darcy) that are tens of metres thick and several kilometres wide could potentially dissolve hundreds of megatons of CO2 in tens of years.

Corresponding author
Email address for correspondence:
Hide All
Ascher U. M., Ruuth S. J. & Spiteri R. J. 1997 Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Maths 25, 151167.
Backhaus S., Turitsyn K. & Ecke R. E. 2011 Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry. Phys. Rev. Lett. 106, 104501.
Bear J. 1972 Dynamics of Fluids in Porous Media. Elsevier, reprinted with corrections by Dover, 1988.
Benson S. M. & Cole D. R. 2008 inline-graphic ${\mathrm{CO} }_{2} $ sequestration in deep sedimentary formations. Elements 4 (5), 325331.
Cheng P. & Chang I. 1976 Buoyancy induced flows in a saturated porous medium adjacent to impermeable horizontal surfaces. Intl J. Heat Mass Transfer 19, 12671272.
Chiaramonte L., Zoback M. D., Friedmann J. & Stamp V. 2008 Seal integrity and feasibility of inline-graphic ${\mathrm{CO} }_{2} $ sequestration in the Teapot Dome EOR pilot: geomechanical site characterization. Environ. Geol. 54 (8), 16671675.
Crank J. 1980 The Mathematics of Diffusion. Oxford University Press.
De Josselin De Jong G. 1981 The simultaneous flow of fresh and salt water in aquifers of large horizontal extension determined by shear flow and vortex theory. Proc. Euromech. 143, 7582.
Elder J. W. 1967 Transient convection in a porous medium. J. Fluid Mech. 27 (3), 609623.
Ennis-King J., Preston I. & Paterson L. 2005 Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids 17, 084107.
Grasso J. R. 1992 Mechanics of seismic instabilities induced by the recovery of hydrocarbons. Pure Appl. Geophys. 139 (3/4), 507534.
Gunter W. D., Bachu S. & Benson S. 2004 The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. In Geological Storage of Carbon Dioxide (ed. Baines S. J. & Worden R. H.), Special Publications, vol. 233, pp. 129145. Geological Society.
Hassanzadeh H., Pooladi-Darvish M. & Keith D. W. 2007 Scaling behaviour of convective mixing, with application to geological storage of inline-graphic ${\mathrm{CO} }_{2} $ . AIChE J. 53 (5), 11211131.
Hesse M. A. 2008 Mathematical modelling and multiscale simulation for inline-graphic ${\mathrm{CO} }_{2} $ storage in saline aquifers. PhD thesis, Stanford University, Department of Energy Resources Engineering.
Hewitt D. R., Neufeld J. A. & Lister J. R. 2013 Convective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech. 719, 551586.
Hidalgo J. J., Fe J., Cueto-Felgueroso L. & Juanes R. 2012 Scaling of convective mixing in porous media. Phys. Rev. Lett. 109, 264503.
Huppert H. E. & Woods A. W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 5569.
IPCC, 2005 Special Report on Carbon Dioxide Capture and Storage (ed. B. Metz et al.) Cambridge University Press.
Kneafsey T. J. & Pruess K. 2010 Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transp. Porous Med. 82, 123139.
Lackner K. S. 2003 A guide to inline-graphic ${\mathrm{CO} }_{2} $ sequestration. Science 300 (5626), 16771678.
Lambert J. D. 1991 Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley.
LeVeque R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.
MacMinn C. W. & Juanes R. 2013 Buoyant currents arrested by convective dissolution. Geophys. Res. Lett. 40 (10), 20172022.
Mathias S. A., Hardisty P. E., Trudell M. R. & Zimmerman R. W. 2009 Screening and selection of sites for inline-graphic ${\mathrm{CO} }_{2} $ sequestration based on pressure buildup. Intl J. Greenh. Gas Control 3, 577585.
Michael K., Golab A., Shulakova V., Ennis-King J., Allinson G., Sharma S. & Aiken T. 2010 Geological storage of inline-graphic ${\mathrm{CO} }_{2} $ in saline aquifers: a review of the experience from existing storage operations. Intl J. Greenh. Gas Control 4, 659667.
Mito S., Xue Z. & Sato T. 2013 Effect of formation water composition on predicting inline-graphic ${\mathrm{CO} }_{2} $ behaviour: a case study at the Nagaoka post-injection monitoring site. Appl. Geochem. 30, 3340.
Neufeld J. A., Hesse M. A., Riaz A., Hallworth M. A., Tchelepi H. A. & Huppert H. E. 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37, L22404.
Nield D. A. & Bejan A. 2013 Convection in Porous Media, 4th edn. Springer.
Orr F. M. Jr. 2009 Onshore geologic storage of inline-graphic ${\mathrm{CO} }_{2} $ . Science 325, 16561658.
Pau G. S. H., Bell J. B., Pruess K., Almgren A. S., Lijewskia M. J. & Zhang K. 2010 High-resolution simulation and characterization of density-driven flow in inline-graphic ${\mathrm{CO} }_{2} $ storage in saline aquifers. Adv. Water Resour. 33 (4), 443455.
Rapaka S., Chen S., Pawar R., Stauffer P. & Zhang D. 2008 Non-modal growth of perturbations in density-driven convection in porous media. J. Fluid Mech. 609, 285303.
Riaz A., Hesse M., Tchelepi H. A. & Orr F. M. Jr. 2006 Onset of convection in a gravitationally unstable, diffusive boundary layer in porous media. J. Fluid Mech. 548, 87111.
Rutqvist J. & Tsang C. 2002 A study of caprock hydromechanical changes associated with inline-graphic ${\mathrm{CO} }_{2} $ -injection into a brine formation. Environ. Geol. 42, 296305.
Schrag D. P. 2007 Preparing to capture carbon. Science 315, 812813.
Slim A. C., Bandi M. M., Miller J. C. & Mahadevan L. 2013 Dissolution-driven convection in a Hele-Shaw cell. Phys. Fluids 25, 024101.
Slim A. C. & Ramakrishnan T. S. 2010 Onset and cessation of time-dependent, dissolution-driven convection in porous media. Phys. Fluids 22, 124103.
Strang G. 2007 Computational Science and Engineering. Wellesley–Cambridge Press.
Szulczewski M. L. & Juanes R. 2013 The evolution of miscible gravity currents in horizontal porous layers. J. Fluid Mech. 719, 8296.
Szulczewski M. L., MacMinn C. W., Herzog H. J. & Juanes R. 2012 Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc. Natl Acad. Sci. USA 109 (14), 51855189.
Underschultz J., Boreham C., Dance T., Stalker L., Freifeld B., Kirste D. & Ennis-King J. 2011 inline-graphic ${\mathrm{CO} }_{2} $ storage in a depleted gas field: an overview of the CO2CRC Otway Project and initial results. Intl J. Greenh. Gas Control 5, 922932.
US Energy Information Administration, US Department of Energy 2009 Emissions of greenhouse gases in the United States 2008. Report no. DOE/EIA-0573(2008).
Wooding R. A., Tyler S. W. & White I. 1997a Convection in groundwater below an evaporating salt lake. Part 1. Onset of instability. Water Resour. Res. 33 (6), 11991217.
Wooding R. A., Tyler S. W. & White I. 1997b Convection in groundwater below an evaporating salt lake. Part 2. Evolution of fingers or plumes. Water Resour. Res. 33 (6), 12191228.
Xu X., Chen S. & Zhang D. 2006 Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Adv. Water Resour. 29, 397407.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 47 *
Loading metrics...

Abstract views

Total abstract views: 227 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.