Skip to main content

Coalescence of diffusively growing gas bubbles

  • Álvaro Moreno Soto (a1), Tom Maddalena (a1) (a2), Arjan Fraters (a1), Devaraj van der Meer (a1) and Detlef Lohse (a1)...

Under slightly supersaturated conditions, bubbles need many minutes to grow due to the low gas diffusivity in liquids. When coalescence occurs, the fact that the bubbles have diffusively grown on top of a surface allows for control with precision of the location and the timing at which the coalescence takes place. Numerous coalescences of two $\text{CO}_{2}$ microbubbles in water are recorded at a frame rate of ${\sim}65\,000~\text{fps}$ . The evolution of the coalescing process is analysed in detail, differentiating among three phases: neck formation, wave propagation along the bubble surface and bubble detachment. First of all, the formation of the collapsing neck between both bubbles is compared to a capillary–inertial theoretical model. Afterwards, the propagating deformation along the surface is characterised measuring its evolution, velocity and dominant wavelength. Once bubbles coalesce, the perturbing waves and the final shape of the new bubble breaks the equilibrium between buoyancy and capillary forces. Consequently, the coalesced bubble detaches and rises due to buoyancy, oscillating with its natural Minnaert frequency. In addition to the experiments, a boundary integral code has been used to obtain numerical results of the coalescence under similar conditions, showing excellent agreement with the experimental data.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Coalescence of diffusively growing gas bubbles
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Coalescence of diffusively growing gas bubbles
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Coalescence of diffusively growing gas bubbles
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email addresses for correspondence:,
Hide All
Andrieu, C., Beysens, D. A., Nikolayev, V. S. & Pomeau, Y. 2002 Coalescence of sessile drops. J. Fluid Mech. 456, 427438.
Anthony, C. R., Kamat, P. M., Thete, S. S., Munro, J. P., Lister, J. R., Harris, M. T. & Basaran, O. A. 2017 Scaling laws and dynamics of bubble coalescence. Phys. Rev. Fluids 2, 083601.
Bergmann, R., van der Meer, D., Gekle, S., van der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.
Boström, M., Craig, V. S. J., Albion, R., Williams, D. R. M. & Ninham, B. W. 2003 Hofmeister effects in pH measurements: role of added salt and co-ions. J. Phys. Chem. B 107 (13), 28752878.
Bremond, N., Arora, M., Dammer, S. M. & Lohse, D. 2006 Interaction of cavitation bubbles on a wall. Phys. Fluids 18, 121505.
Case, S. C. & Nagel, S. R. 2008 Coalescence in low-viscosity liquids. Phys. Rev. Lett. 100, 084503.
Chesters, A. K. & Hofman, G. 1982 Bubble coalescence in pure liquids. Appl. Sci. Res. 38 (1), 353361.
Crabtree, J. R. & Bridgwater, J. 1971 Bubble coalescence in viscous liquids. Chem. Engng Sci. 26, 839851.
Craig, V. S. J., Ninham, B. W. & Pashley, R. M. 1993 The effect of electrolytes on bubble coalescence in water. J. Phys. Chem. 97 (39), 1019210197.
Cussler, E. L. 2009 Diffusion: Mass Transfer in Fluid Systems, 3rd edn, Cambridge Series in Chemical Engineering. Cambridge University Press.
Diamond, L. W. & Akinfiev, N. N. 2003 Solubility of CO2 in water from -1.5 to 100 °C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid Phase Equilib. 208, 265290.
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14 (9), 30003008.
Eggers, J., Lister, J. R. & Stone, H. A. 1999 Coalescence of liquid drops. J. Fluid Mech. 401, 293310.
Enríquez, O. R., Hummelink, C., Bruggert, G.-W., Lohse, D., Prosperetti, A., van der Meer, D. & Sun, C. 2013 Growing bubbles in a slightly supersaturated liquid solution. Rev. Sci. Instrum. 84, 065111.
Enríquez, O. R., Sun, C., Lohse, D., Prosperetti, A. & van der Meer, D. 2014 The quasi-static growth of CO2 bubbles. J. Fluid Mech. 741, R1.
Enríquez Paz y Puente, O. R.2015 Growing bubbles and freezing drops: depletion effects and tip singularities. PhD thesis, Physics of Fluids, Universiteit Twente, PO Box 217, 7500AE Enschede, The Netherlands.
Epstein, P. S. & Plesset, M. S. 1950 On the stability of gas bubbles in liquid–gas solutions. J. Chem. Phys. 18 (11), 15051509.
Frank, M. J. W., Kuipers, J. A. M. & van Swaaij, W. P. M. 1996 Diffusion coefficients and viscosities of CO2 + H2O, CO2 + CH3OH, NH3 + H2O, and NH3 + CH3OH liquid mixtures. J. Chem. Engng Data 41, 297302.
Fritz, W. 1935 Berechnung des Maximalvolumens von Dampfblasen. Phys. Z. 36, 379388.
Gekle, S., van der Bos, A., Bergmann, R., van der Meer, D. & Lohse, D. 2008 Noncontinuous Froude number scaling for the closure depth of a cylindrical cavity. Phys. Rev. Lett. 100, 084502.
Gekle, S., Gordillo, J. M., van der Meer, D. & Lohse, D. 2009 High-speed jet formation after solid object impact. Phys. Rev. Lett. 102, 034502.
Gilet, T., Mulleners, K., Lecomte, J. P., Vandewalle, N. & Dorbolo, S. 2007 Critical parameters for the partial coalescence of a droplet. Phys. Rev. E 75, 036303.
Hebach, A., Oberhof, A. & Dahmen, N. 2004 Density of water + carbon dioxide at elevated pressures: measurements and correlation. J. Chem. Engng Data 49, 950953.
Hernández-Sánchez, J. F., Lubbers, L. A., Eddi, A. & Snoeijer, J. H. 2012 Symmetric and asymmetric coalescence of drops on a substrate. Phys. Rev. Lett. 109, 184502.
Kapur, N. & Gaskell, P. H. 2007 Morphology and dynamics of droplet coalescence on a surface. Phys. Rev. E 75, 056315.
Lamb, H. 1895 Hydrodynamics, 2nd edn. Cambridge University Press.
Liberzon, D., Shemer, L. & Barnea, D. 2006 Upward-propagating capillary waves on the surface of short Taylor bubbles. Phys. Fluids 18, 048103.
Liger-Belair, G., Prost, E., Parmentier, M., Jeandet, P. & Nuzillard, J.-M. 2003 Diffusion coefficient of CO2 molecules as determined by 13C NMR in various carbonated beverages. J. Agric. Food Chem. 51 (26), 75607563.
Liger-Belair, G., Seon, T. & Antkowiak, A. 2012 Collection of collapsing bubble driven phenomena found in champagne glasses. Bubble Sci. Engng Technol. 4 (1), 2134.
Liger-Belair, G., Sternenberg, F., Brunner, S., Robillard, B. & Cilindre, C. 2015 Bubble dynamics in various commercial sparkling bottled waters. J. Food Engng 163, 6070.
Liu, F., Ghigliotti, G., Feng, J. J. & Chen, C.-H. 2014 Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. J. Fluid Mech. 752, 3965.
Lohse, D. & Prosperetti, A. 2003 Controlling bubbles. J. Phys.: Condens. Matter 15, S415S420.
Lu, W., Guo, H., Chou, I. M., Burruss, R. C. & Li, L. 2013 Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements. Geochim. Cosmochim. Acta 115, 183204.
Lubetkin, S. D. & Akhtar, M. 1996 The variation of surface tension and contact angle under applied pressure of dissolved gases, and the effects of these changes on the rate of bubble nucleation. J. Colloid Interface Sci. 180, 4360.
Marrucci, G. 1969 A theory of coalescence. Chem. Engng Sci. 24, 975985.
Menchaca-Rocha, A., Martínez-Dávalos, A. & Núñez, R. 2001 Coalescence of liquid drops by surface tension. Phys. Rev. E 63, 046309.
Minnaert, M. 1933 XVI. On musical air-bubbles and the sounds of running water. Lond. Edinb. Dubl. Phil. Mag. 16 (104), 235248.
Moran, M. J. & Shapiro, H. N. 2006 Fundamentals of Engineering Thermodynamics, 5th edn. Wiley.
Moreno Soto, Á., Prosperetti, A., van der Meer, D. & Lohse, D. 2017 Gas depletion through single gas bubble diffusive growth and its effect on subsequent bubbles. J. Fluid Mech. 831, 474490.
Munro, J. P., Anthony, C. R., Basaran, O. A. & Lister, J. R. 2015 Thin-sheet flow between coalescing bubbles. J. Fluid Mech. 773, R3.
Og̃uz, H. N. & Prosperetti, A. 1989 Surface-tension effects in the contact of liquid surfaces. J. Fluid Mech. 203, 149171.
Og̃uz, H. N. & Prosperetti, A. 1993 Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 257, 111145.
Oolman, T. O. & Blanch, H. W. 1986 Bubble coalescence in stagnant liquids. Chem. Engng Commun. 43 (4–6), 237261.
Paulsen, J. D., Burton, J. C. & Nagel, S. R. 2011 Viscous to inertial crossover in liquid drop coalescence. Phys. Rev. Lett. 106, 114501.
Paulsen, J. D., Burton, J. C., Nagel, S. R., Appathurai, S., Harris, M. T. & Basaran, O. A. 2012 The inexorable resistance of inertia determines the initial regime of drop coalescence. Proc. Natl Acad. Sci. USA 109 (18), 68576861.
Paulsen, J. D., Carmigniani, R., Kannan, A., Burton, J. C. & Nagel, S. R. 2014 Coalescence of bubbles and drops in an outer fluid. Nat. Commun. 5, 3182.
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145185.
Power, H. & Wrobel, L. C. 1995 Boundary Integral Methods in Fluid Mechanics. Computational Mechanics Publications.
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. A 29, 7197.
Somorjai, G. A. & Li, Y. 2010 Introduction to Surface Chemistry and Catalysis, 2nd edn. Wiley.
Stover, R. L., Tobias, C. W. & Denn, M. M. 1997 Bubble coalescence dynamics. AIChE J. 43 (10), 23852392.
Thoroddsen, S. T., Etoh, T. G., Takehara, K. & Ootsuka, N. 2005a On the coalescence speed of bubbles. Phys. Fluids 17, 071703.
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2005b The coalescence speed of a pendent and a sessile drop. J. Fluid Mech. 527, 85114.
Verhaart, H. F. A., de Jonge, R. M. & van Stralen, S. J. D. 1979 Growth rate of a gas bubble during electrolysis in supersaturated liquid. Intl J. Heat Mass Transfer 23, 293299.
Versluis, M., Goertz, D. E., Palanchon, P., Heitman, I. L., van der Meer, S. M., Dollet, B., de Jong, N. & Lohse, D. 2010 Microbubble shape oscillations excited through ultrasonic parametric driving. Phys. Rev. E 82, 026321.
Wisdom, K. M., Watson, J. A., Qu, X., Liu, F., Watson, G. S. & Chen, C.-H. 2013 Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proc. Natl Acad. Sci. USA 110 (20), 79927997.
Wu, M., Cubaud, T. & Ho, C.-M. 2004 Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluids 16 (7), L51L54.
Zhang, F. H., Thoraval, M.-J., Thoroddsen, S. T. & Taborek, P. 2015 Partial coalescence from bubbles to drops. J. Fluid Mech. 782, 209239.
Zhang, F. H. & Thoroddsen, T. 2008 Satellite generation during bubble coalescence. Phys. Fluids 20, 022104.
Zhu, X., Verzicco, R., Zhang, X. & Lohse, D. 2018 Diffusive interaction of multiple surface nanobubbles: shrinkage, growth, and coarsening. Soft Matt. 14 (11), 20062014.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title

Moreno Soto et al. supplementary movie
Simulation of the bubble coalescence event obtained with an axisymmetric Boundary Integral (BI) code and comparison with performed experiments under the same conditions.

 Video (24.6 MB)
24.6 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed