Skip to main content Accessibility help
×
×
Home

Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography

  • Marine Tort (a1), Thomas Dubos (a1), François Bouchut (a2) and Vladimir Zeitlin (a1) (a3)
Abstract

Consistent shallow-water equations are derived on the rotating sphere with topography retaining the Coriolis force due to the horizontal component of the planetary angular velocity. Unlike the traditional approximation, this ‘non-traditional’ approximation captures the increase with height of the solid-body velocity due to planetary rotation. The conservation of energy, angular momentum and potential vorticity are ensured in the system. The caveats in extending the standard shallow-water wisdom to the case of the rotating sphere are exposed. Different derivations of the model are possible, being based, respectively, on (i) Hamilton’s principle for primitive equations with a complete Coriolis force, under the hypothesis of columnar motion, (ii) straightforward vertical averaging of the ‘non-traditional’ primitive equations, and (iii) a time-dependent change of independent variables in the primitive equations written in the curl (‘vector-invariant’) form, with subsequent application of the columnar motion hypothesis. An intrinsic, coordinate-independent form of the non-traditional equations on the sphere is then given, and used to derive hyperbolicity criteria and Rankine–Hugoniot conditions for weak solutions. The relevance of the model for the Earth’s atmosphere and oceans, as well as other planets, is discussed.

Copyright
Corresponding author
Email address for correspondence: zeitlin@lmd.ens.fr
References
Hide All
Bleck, R. 2002 An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model. 4 (1), 5588.
Colin-de Verdiere, A. 2012 The stability of short symmetric internal waves on sloping fronts: beyond the traditional approximation. J. Phys. Oceanogr. 42 (3), 459475.
Dellar, P. J. 2011 Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech. 674, 174195.
Dellar, P. J. & Salmon, R. 2005 Shallow water equations with a complete Coriolis force and topography. Phys. Fluids 17 (10), 106601.
Eckart, C. 1960 Hydrodynamics of Oceans and Atmospheres. Pergamon Press.
Gates, W. L. 2004 Derivation of the equations of atmospheric motion in oblate spheroidal coordinates. J. Atmos. Sci. 61, 24782487.
Gerkema, T. & Shrira, V. I. 2005 Near-inertial waves in the ocean: beyond the traditional approximation. J. Fluid Mech. 529, 195219.
Gerkema, T., Zimmerman, J. T. F., Maas, L. R. M. & van Haren, H. 2008 Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46 (2), RG2004.
Grimshaw, R. H. J. 1975 A note on the beta-plane approximation. Tellus 27 (4), 351357.
Hayashi, M. & Itoh, H. 2012 The importance of the nontraditional Coriolis terms in large-scale motions in the tropics forced by prescribed cumulus heating. J. Atmos. Sci. 69 (9), 26992716.
Holm, D. D. & Zeitlin, V. 1998 Hamilton’s principle for quasigeostrophic motion. Phys. Fluids 10 (4), 800806.
Korn, G. A. & Korn, T. M. 2000 Mathematical Handbook for Scientists and Engineers. Dover.
Landau, L. D. & Lifshitz, E. M. 1976 Mechanics. Pergamon Press.
Lin, S. J. 2004 A vertically Lagrangian finite-volume dynamical core for global models. Mon. Weath. Rev. 132 (10), 22932307.
Pedlosky, J. 1979 Geophysical Fluid Dynamics. Springer.
Phillips, N. A. 1966 The equations of motion for a shallow rotating atmosphere and the ‘traditional approximation’. J. Atmos. Sci. 23 (5), 626628.
Raymond, W. H. 2000 Equatorial meridional flows: rotationally induced circulations. Pure Appl. Geophys. 157 (10), 17671779.
Reznik, G. M., Zeitlin, V. & BenJelloul, M. 2001 Nonlinear theory of the geostrophic adjustment. Part 1. Rotating shallow water model. J. Fluid Mech. 445, 93120.
Ripa, P. 1993 Conservation laws for primitive equations models with inhomogeneous layers. Geophys. Astrophys. Fluid Dyn. 70 (1–4), 85111.
Salmon, R. 1988 Hamiltonian fluid dynamics. Annu. Rev. Fluid Mech. 20, 225256.
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.
Scott, R. K. & Polvani, L. M. 2007 Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci. 64, 31583176.
Stewart, A. L. & Dellar, P. J. 2011 Cross-equatorial flow through an abyssal channel under the complete Coriolis force: two-dimensional solutions. Ocean Model.
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press.
White, A. A. & Bromley, R. A. 1995 Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Q. J. R. Meteorol. Soc. 121 (522), 399418.
White, A. A., Hoskins, B. J., Roulstone, I. & Staniforth, A. 2005 Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Q. J. R. Meteorol. Soc. 131, 20812107.
White, A. A. & Wood, N. 2012 Consistent approximate models of the global atmosphere in non-spherical geopotential coordinates. Q. J. R. Meteorol. Soc. 138 (665), 980988.
Williamson, D., Drake, J., Hack, J., Jakob, R. & Swarztrauber, P. 1992 A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102 (1), 211224.
Zeitlin, V. 2007 Introduction: fundamentals of rotating shallow water model in the geophysical fluid dynamics perspective. In Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances (ed. Zeitlin, V.), chap. 1, Elsevier.
Zeitlin, V., Medvedev, S. B. & Plougonven, R. 2003 Frontal geostrophic adjustment, slow manifold and nonlinear wave phenomena in one-dimensional rotating shallow-water. Part 1: theory. J. Fluid Mech. 481, 269290.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed