Skip to main content Accessibility help

Crown sealing and buckling instability during water entry of spheres

  • J. O. Marston (a1), T. T. Truscott (a2), N. B. Speirs (a2), M. M. Mansoor (a3) and S. T. Thoroddsen (a3) (a4)...


We present new observations from an experimental investigation of the classical problem of the crown splash and sealing phenomena observed during the impact of spheres onto quiescent liquid pools. In the experiments, a 6 m tall vacuum chamber was used to provide the required ambient conditions from atmospheric pressure down to $1/16\text{th}$ of an atmosphere, whilst high-speed videography was exploited to focus primarily on the above-surface crown formation and ensuing dynamics, paying particular attention to the moments just prior to the surface seal. In doing so, we have observed a buckling-type azimuthal instability of the crown. This instability is characterised by vertical striations along the crown, between which thin films form that are more susceptible to the air flow and thus are drawn into the closing cavity, where they atomize to form a fine spray within the cavity. To elucidate to the primary mechanisms and forces at play, we varied the sphere diameter, liquid properties and ambient pressure. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates that the buckling instability appears in all crown sealing events, but is intensified by the presence of a pinned contact line.


Corresponding author

Email address for correspondence:


Hide All
Abelson, H. I. 1970 Pressure measurements in the water-entry cavity. J. Fluid Mech. 44, 129144.
Aristoff, J. M. & Bush, J. W. M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 4578.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Birkhoff, G. & Isaacs, R.1951 Transient cavities in air–water entry. NAVORD Report No. 1490.
Bischofberger, I., Mauser, K. W. & Nagel, S. R. 2013 Seeing the invisible – air vortices around a splashing drop. Phys. Fluids 25, 091110.
Darbois Texier, B., Piroird, K., Quere, D. & Clanet, C. 2013 Inertial collapse of liquid rings. J. Fluid Mech. 717, R3.
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3, 180183.
Enriquez, O. R., Peters, I. R., Gekle, S., Schmidt, L. E., Lohse, D. & van der Meer, D. 2012 Coolapse and pinch-off of a non-axisymmetric impact-created air cavity in water. J. Fluid Mech. 701, 4058.
Enriquez, O. R., Peters, I. R., Gekle, S., Schmidt, L. E., van der Meer, D. & Lohse, D. 2011 Non-axisymmetric impact creates pineapple-shaped cavity. Phys. Fluids 23, 091106.
Gillbarg, D. & Anderson, R. 1948 Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water. J. Appl. Phys. 19, 127139.
Lee, M., Longoria, R. G. & Wilson, D. E. 1997 Cavity dynamics in high-speed water entry. Phys. Fluids 9, 540550.
Lhuissier, H. & Villermaux, E. 2009 Destabilization of flapping sheets: the surprising analog of soap films. C. R. Mec. 337, 469480.
Mansoor, M. M., Marston, J. O., Vakarelski, I. U. & Thoroddsen, S. T. 2014 Water entry without surface seal: extended cavity formation. J. Fluid Mech. 743, 295326.
Marston, J. O., Mansoor, M. M., Truscott, T. T. & Thoroddsen, S. T. 2015 Buckling instability of crown sealing. Phys. Fluids 27, 091112.
Marston, J. O., Vakarelski, I. U. & Thoroddsen, S. T. 2012 Cavity formation by the impact of Leidenfrost spheres. J. Fluid Mech. 699, 465488.
May, A. 1952 Vertical entry of missiles into water. J. Appl. Phys. 22, 13621372.
McGraw, J. D., Li, J., Tran, D. L., Shi, A. C. & Dalnoki-Veress, K. 2010 Plateau–Rayleigh instability in a torus: formation and breakup of a polymer ring. Soft Matt. 6, 12581262.
Pairam, E. & Fernandez-Nieves, A. 2009 Generation and stability of toroidal droplets in a viscous liquid. Phys. Rev. Lett. 102, 234501.
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.
Thoroddsen, S. T., Etoh, T. G., Takehara, K. & Takano, Y. 2004 Impact jetting by a solid sphere. J. Fluid Mech. 499, 139148.
Thoroddsen, S. T., Thoraval, M.-J., Takehara, K. & Etoh, T. G. 2011 Droplet splashing by a slingshot mechanism. Phys. Rev. Lett. 106, 034501.
Truscott, T. T., Epps, B. P. & Belden, J. 2013 Water entry of projectiles. Annu. Rev. Fluid Mech. 46, 355378.
Villermaux, E. & Clanet, C. 2002 Life of a flapping liquid sheet. J. Fluid Mech. 462, 341363.
Villermaux, E., Pistre, V. & Lhuissier, H. 2013 The viscous Savart sheet. J. Fluid Mech. 730, 607625.
Worthington, A. M. 1908 A Study of Splashes. Longmans Green.
Worthington, A. M. & Cole, R. S. 1897 Impact with a liquid surface studied by the aid of instantaneous photography. Phil. Trans. R. Soc. Lond. A 189, 137148.
Yakimov, Y. L. 1973 Effect of the atmosphere with the fall of bodies into water. Izv. Akad. Nauk. SSSR Mekh. Zhidk. Gaza 5, 36.
Zhang, V., Toole, J., Fezzaa, K. & Deegan, R. D. 2011 Evolution of the ejecta sheet from the impact of a drop with a deep pool. J. Fluid Mech. 690, 515.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Crown sealing and buckling instability during water entry of spheres

  • J. O. Marston (a1), T. T. Truscott (a2), N. B. Speirs (a2), M. M. Mansoor (a3) and S. T. Thoroddsen (a3) (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.