Skip to main content Accessibility help
×
Home

Dispersive entrainment into gravity currents in porous media

  • Chunendra K. Sahu (a1) (a2) and Jerome A. Neufeld (a1) (a2) (a3)

Abstract

The effects of dispersion acting on gravity currents propagating through porous media are considered theoretically and experimentally. We exploit the large aspect ratio of these currents to formulate a depth-averaged model of the evolution of the mass and buoyancy. Dispersion, acting predominantly at the interface between the current and the ambient, is velocity dependent and acts to entrain fluid into the gravity current, in direct analogy to turbulent mixing. Here, we show that when the gravity current is fed by a constant buoyancy and mass flux the buoyancy of the current is self-similar and recovers the classical solution for gravity currents in porous media. In contrast, the profile and the depth-averaged concentration of the current evolve in a non-self-similar manner. The total volume of the current increases with time as $t^{1/3}$ due to this dispersive entrainment. We test our theoretical predictions using a suite of laboratory experiments in which the evolution of the concentration within the current was mapped using a dye-attenuation technique. These experimental results show good agreement with the early-time limits of our theoretical model, and in particular accurately predict the evolution of the depth-averaged concentration profile. These results suggest that mixing within porous media may be modelled using an effective dispersive entrainment, the magnitude of which may be set by the underlying structure of the porous medium.

Copyright

Corresponding author

Email address for correspondence: cks34@cam.ac.uk

References

Hide All
Alpay, O. A. 1972 A practical apporach to defining reservoir heterogeneity. J. Petrol. Tech. 24, 841848.
Anderson, D. M., McLaughlin, R. M. & Miller, C. T. 2003 The averaging of gravity currents in porous media. Phys. Fluids 15, 28102829.
Anderson, D. M., McLaughlin, R. M. & Miller, C. T. 2004 On gravity currents in heterogeneous porous media. Dev. Water Sci. 55, 303312.
Carrera, J. 1993 An overview of uncertainties in modelling groundwater solute transport. J. Contam. Hydrol. 13, 2348.
Ciriello, V., Longo, S., Chiapponi, L. & Di Federico, V. 2016 Porous gravity currents: a survey to determine the joint influence of fluid rheology and variations of medium properties. Water Resour. Res. 92, 105115.
Delgado, J. M. P. Q. 2007 Longitudinal and transverse dispersion in porous media. IChemE 85, 12451252.
Dentz, M., Tartakovsky, D. M., Abarca, E., Guadagnini, A., Sanchez-Vila, X. & Carrera, J. 2006 Variable-density flow in porous media. J. Fluid Mech. 561, 209235.
Enick, R. M. & Klara, S. M. 1990 Co2 solubility in water and brine under reservoir conditions. Chem. Engng Commun. 90, 2333.
Fiori, A., Bellin, A., Cvetkovic, V., de Barros, F. P. J. & Dagan, G. 2015 Stochastic modeling of solute transport in aquifers: From heterogeneity characterization to risk analysis. Water Resour. Res. 51, 66226648.
Fleurant, C. & van der Lee, J. 2001 A stochastic model of transport in three-dimensional porous media. Math. Geol. 33, 449474.
Gelhar, L. W. 1992 A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 28 (7), 19551974.
Goda, T. & Sato, K. 2011 Gravity currents of carbon dioxide with residual gas trapping in a two-layered porous medium. J. Fluid Mech. 673, 6079.
Gunn, I. & Woods, A. W. 2011 On the flow of buoyant fluid injected into a confined, inclined aquifer. J. Fluid Mech. 672, 109129.
Guo, B., Bandilla, K. W., Nordbotten, J. M., Celia, M. A., Keilegavlen, E. & Doster, F. 2016 A multiscale multilayer vertically integrated model with vertical dynamics for CO2 sequestration in layered geological formations. Adv. Water Resour. 52, 64906505.
Huppert, H. E., Neufeld, J. A. & Strandkvist, C. 2013 The competition between gravity and flow focusing in two-layered porous media. J. Fluid Mech. 720, 514.
Huppert, H. E. & Woods, A. W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 5569.
Huyakorn, P. S., Andersen, P. F., Mercer, J. W. & White, H. O. Jr. 1987 Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model. Water Resour. Res. 23, 293312.
Johnson, C. G. & Hogg, A. J. 2013 Entraining gravity currents. J. Fluid Mech. 731, 477508.
Lauriola, I., Felisa, G., Petrolo, D., Di Federico, V. & Longo, S. 2018 Porous gravity currents: axisymmetric propagation in horizontally graded medium and a review of similarity solutions. Adv. Water Resour. 115, 136150.
Lyle, S., Huppert, H. E., Hallworth, M., Bickle, M. & Chadwick, A. 2005 Axisymmetric gravity currents in a porous medium. J. Fluid Mech. 543, 293302.
MacMinn, C. W., Neufeld, J. A., Hesse, M. A. & Huppert, H. E. 2012 Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resour. Res. 48, 111.
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.
Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, M. A. & Huppert, H. E. 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37, 15.
Nordbotten, J. M., Celia, M. A. & Bachu, S. 2005 Injection and storage of CO2 in seep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Med., 58, 339360.
Pastar, A. & Dagan, G. 2007 Mixing at the interface between two fluids in porous media: a boundary-layer solution. J. Fluid Mech. 584, 455472.
Pattle, R. E. 1959 Diffusion from an instantaneous point source with a concentration dependent coefficient. Q. J. Mech. Appl. Maths XII (4), 407409.
Pegler, S. S., Huppert, H. E. & Neufeld, J. A. 2014 Fluid injection into a confined porous layer. J. Fluid Mech. 745, 592620.
Pegler, S. S., Huppert, H. E. & Neufeld, J. A. 2016 Stratified gravity currents in porous media. J. Fluid Mech. 791, 329357.
Pegler, S. S., Maskell, A. S. D., Daniels, K. A. & Bickle, M. J. 2017 Fluid transport in geological reservoirs with background flow. J. Fluid Mech. 827, 536571.
Pritchard, D., Woods, A. W. & Hogg, A. J. 2001 On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech. 444, 2347.
Sahu, C. K. & Flynn, M. R. 2015 Filling box flows in porous media. J. Fluid Mech. 782, 455478.
Sahu, C. K. & Flynn, M. R. 2017 The effect of sudden permeability changes in porous media filling box flows. Transp. Porous Med. 119, 95118.
Szulczewski, M. L. & Juanes, R. 2013 The evolution of miscible gravity currents in horizontal porous layers. J. Fluid Mech. 719, 8296.
Vella, D. & Huppert, H. E. 2006 Gravity currents in a porous medium at an inclined plane. J. Fluid Mech. 555, 353362.
Verwoerd, W. S. 2007 New stochastic model for dispersion in heterogeneous porous media. 1. Application to unbounded domains. Appl. Math. Model. 33, 605625.
Wheatcarft, S. W. & Tyler, S. W. 1988 An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res 24 (4), 566578.
Woods, A. W. 2015 Flow in Porous Rocks: Energy and Environmental Applications. Cambridge University Press.
Woods, A. W. & Mason, R. 1998 Vaporizing gravity currents in a superheated porous medium. J. Fluid Mech. 377, 151168.
Woods, A. W. & Mason, R. 2000 The dynamics of two-layer gravity-driven flows in permeable rock. J. Fluid Mech. 421, 83114.
Zheng, Z., Christov, I. C. & Stone, H. A. 2014 Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents. J. Fluid Mech. 747, 218246.
Zheng, Z., Guo, B., Christov, I. C., Celia, M. A. & Stone, H. A. 2015 Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 767, 881909.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Dispersive entrainment into gravity currents in porous media

  • Chunendra K. Sahu (a1) (a2) and Jerome A. Neufeld (a1) (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed