Skip to main content Accessibility help
×
Home

Drag kings: characterizing large-scale flows in cycling aerodynamics

  • A. E. Hosoi (a1)

Abstract

In their recent publication Crouch et al. (J. Fluid Mech., this issue, vol. 748, 2014, pp. 5–35) use wind tunnel experiments to quantify the large-scale vortical structures that develop as a cyclist progresses through a full rotation of the pedals. The authors identify asymmetries in the trailing vortex wake, which intensify as one leg straightens, as the primary source of drag variation over one pedal cycle. These new data suggest that targeted approaches to mitigate asymmetries in the trailing wake present an intriguing opportunity to reduce drag in cycling strategies and technologies.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Drag kings: characterizing large-scale flows in cycling aerodynamics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Drag kings: characterizing large-scale flows in cycling aerodynamics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Drag kings: characterizing large-scale flows in cycling aerodynamics
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: peko@mit.edu

References

Hide All
Crouch, T. N., Burton, D., Brown, N. A. T., Thompson, M. C. & Sheridan, J. 2014 Flow topology in the wake of a cyclist and its effect on aerodynamic drag. J. Fluid Mech 748, 535.
Kyle, C. R. 1979 Reduction of wind resistance and power output of racing cyclists and runners travelling in groups. Ergonomics 22 (4), 387397.
Parker, J. F. & West, V. R. 1973 Bioastronautics Data Book, 2nd edn. NASA SP-3006.
Vogt, S., Schumacher, Y. O., Roecker, K., Dickhuth, H. H., Schoberer, U., Schmid, A. & Heinrich, L. 2007 Power output during the Tour de France. Intl J. Sports Med. 28, 756761.
Wilson, D. G. 2004 Bicycling Science. MIT Press.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed