Skip to main content Accesibility Help

Dynamics of laser-induced bubble pairs

  • Bing Han (a1) (a2) (a3), Karsten Köhler (a2), Kerstin Jungnickel (a3), Robert Mettin (a2), Werner Lauterborn (a2) and Alfred Vogel (a3)...

The interaction of two laser-induced bubbles in bulk water is investigated. The strength and direction of the emerging liquid jets can be controlled by adjusting the relative bubble positions, the time difference between bubble generation, and the laser pulse energies determining the bubble sizes. Experimental and numerical studies are performed for millimetre-sized bubble pairs. Taking bubbles of equal energy, a maximum jet velocity is found for close anti-phase bubbles, i.e. when the second bubble is produced at the maximum volume of the first one and the bubble walls are almost touching and not merging. Under these conditions, one bubble produces a fast jet with a peak velocity of about $150~\text{m}~\text{s}^{-1}$ that reaches a distance into the surrounding liquid of at least three times the maximum bubble radius. Collapse of the other bubble results in a slow jet of large mass that rapidly converts into a ring vortex. Correspondingly, the interaction with adjacent structures is dominated either by localized jet impact or by shear stresses extending over a larger area. Furthermore, interactions between micrometre-sized bubble pairs are investigated numerically to understand and predict how the effects of the physical parameters on bubble dynamics would change when the bubbles become smaller. The results are discussed with respect to micropumping and opto-injection.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dynamics of laser-induced bubble pairs
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dynamics of laser-induced bubble pairs
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dynamics of laser-induced bubble pairs
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence:
Hide All
Akhatov, I., Lindau, O., Topolnikov, A., Mettin, R., Vakhitova, N. & Lauterborn, W. 2001 Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids 13, 28052819.
Antkowiak, A., Bremond, N., Le Dizès, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.
Antkowiak, M., Torres-Mapa, M. L., Gunn-Moore, F. & Dholakia, K. 2010 Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection. J. Biophoton. 3, 696705.
Antkowiak, M., Torres-Mapa, M. L., Stevenson, D. J., Dholakia, K. & Gunn-Moore, F. J. 2013a Femtosecond optical transfection of individual mammalian cells. Nat. Prot. 8, 12161233.
Antkowiak, M., Torres-Mapa, M. L., Witts, E. C., Miles, G. B., Dholakia, K. & Gunn-Moore, F. J. 2013b Fast targeted gene transfection and optogenetic modification of single neurons using femtosecond laser irradiation. Sci. Rep. 3, 3281.
Baumgart, J., Bintig, W., Ngezahayo, A., Willenbrock, S., Murua Escobar, H., Ertmer, W., Lubatschowski, H. & Heisterkamp, A. 2008 Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53a cells. Opt. Express 5, 30213031.
Benjamin, T. B. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221240.
Blake, J. R. & Gibson, D. C. 1981 Growth and collapse of a vapor cavity near a free surface. J. Fluid Mech. 111, 123140.
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99123.
Blake, J. R., Robinson, P. B., Shima, A. & Tomita, Y. 1993 Interaction of two cavitation bubbles with a rigid boundary. J. Fluid Mech. 255, 707721.
Blake, J. R., Taib, B. B. & Doherty, G. 1986 Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479497.
Blake, J. R., Taib, B. B. & Doherty, G. 1987 Transient cavities near boundaries. Part 2. Free surface. J. Fluid Mech. 181, 197212.
Bourne, N. K. & Field, J. E. 1992 Shock-induced collapse of single cavities in liquids. J. Fluid Mech. 244, 225240.
Bourne, N. K. & Field, J. E. 1999 Shock-induced collapse and luminescence by cavities. Phil. Trans. R. Soc. Lond. A 357, 295311.
Bowden, F. B. 1966 The formation of microjets in liquids under the influence of impact or shock. Phil. Trans. R. Soc. Lond. A 260, 9495.
Bremond, N., Arora, M., Dammer, S. M. & Lohse, D. 2006 Interaction of cavitation bubbles on a wall. Phys. Fluids 18, 121505.
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press.
Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425484.
Brujan, E.-A., Keen, G. S., Vogel, A. & Blake, J. R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14, 8592.
Brujan, E.-A., Nahen, K., Schmidt, P. & Vogel, A. 2001a Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 251281.
Brujan, E.-A., Nahen, K., Schmidt, P. & Vogel, A. 2001b Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J. Fluid Mech. 433, 283314.
Brunton, J. H. 1966 High speed liquid impact. Phil. Trans. R. Soc. Lond. A 260, 7985.
Burton, J. C., Waldrep, R. & Taborek, P. 2005 Scaling and instabilities in bubble pinch-off. Phys. Rev. Lett. 94, 184502.
Chahine, G. L. 1977 Interaction between an oscillating bubble and a free surface. Trans. ASME: J. Fluids Engng 99, 709716.
Chew, L. W., Klaseboer, E., Ohl, S. W. & Khoo, B. C. 2011 Interaction of two differently sized oscillating bubbles in a free field. Phys. Rev. E 84, 066307.
Compton, J. L., Hellman, A. N. & Venugopalan, V. 2013 Hydrodynamic determinants of cell necrosis and molecular delivery produced by pulsed laser microbeam irradiation of adherent cells. Biophys. J. 105, 22212231.
Davis, A. A., Farrar, M. J., Nishimura, N., Jin, M. M. & Schaffer, C. B. 2013 Optoporation and genetic manipulation of cells using femtosecond laser pulses. Biophys. J. 105, 826871.
Dear, J. P., Field, J. E. & Walton, A. J. 1988 Gas compression and jet formation in cavities collapsed by shock waves. Nature 332, 505508.
Diacumakos, E. G. 1973 Methods for micromanipulation of human somatic cells in culture. Meth. Cell Biol. 7, 287311.
Dijkink, R., Le Gac, S., Nijhuis, E., van den Berg, A., Vermes, I., Poot, A. & Ohl, C.-D. 2008 Controlled cavitation–cell interaction: trans-membrane transport and viability studies. Phys. Med. Biol. 53, 375390.
Dijkink, R. & Ohl, C.-D. 2008 Laser-induced cavitation based micropump. Lab on a Chip 8, 16761681.
Dreyer, W., Duderstadt, F., Hantke, M. & Warnecke, G. 2012 Bubbles in liquids with phase transition. Part 1. On phase change of a single vapor bubble in liquid water. Contin. Mech. Thermodyn. 24, 461483.
Feng, Z. C. & Leal, L. G. 1997 Nonlinear bubble dynamics. Annu. Rev. Fluid Mech. 29, 201243.
Fong, S. W., Adhikari, D., Klaseboer, E. & Khoo, B. C. 2009 Interactions of multiple spark-generated bubbles with phase differences. Exp. Fluids 46, 705724.
Fujikawa, S. & Akamatsu, T. 1980 Effects of the nonequilibrium condensation of vapor on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97, 481512.
Fuster, D., Agbaglah, G., Josserand, C., Popinet, S. & Zaleski, S. 2009 Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41, 065001.
Gaitan, D. F., Crum, L. A., Church, C. C. & Roy, R. A. 1992 Sonoluminescence and bubble dynamics for a single, stable cavitation bubble. J. Acoust. Soc. Am. 91, 31663183.
Gibson, D. C. & Blake, J. R. 1982 The growth or collapse of bubbles near deformable surfaces. Appl. Sci. Res. 38, 215224.
Gordillo, J. M. & Fontelos, M. A. 2007 Satellites in the inviscid breakup of bubbles. Phys. Rev. Lett. 98, 144503.
Hawker, N. A. & Ventikos, Y. 2012 Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study. J. Fluid Mech. 701, 5997.
Hellman, A. N., Rau, K. R., Yoon, H. H., Bae, S., Palmer, J. F., Phillips, K. S., Allbritton, N. L. & Venugopalan, V. 2007 Laser-induced mixing in microfluidic channels. Analyt. Chem. 79, 44844492.
Hellman, A. N., Rau, K. R., Yoon, H. H. & Venugopalan, V. 2008 Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery. J. Biophoton. 1, 2435.
Hentschel, W. & Lauterborn, W. 1982 Acoustic emission of single laser-produced cavitation bubbles. Appl. Sci. Res. 38, 225230.
Hilgenfeldt, S., Lohse, D. & Brenner, M. P. 1996 Phase diagrams for sonoluminescing bubbles. Phys. Fluids 8, 28082826.
Hsiao, C.-T., Choi, J.-K., Singh, S., Chahine, G. L., Hay, T. A., Ilinskii, Yu. A., Zabolotskaya, E., Hamilton, M. F., Sankin, G., Yuan, F. & Zhong, P. 2013 Modelling single- and tandem-bubble dynamics between two parallel plates for biomechanical application. J. Fluid Mech. 716, 137170.
Hutson, M. S. & Ma, X. 2007 Plasma and cavitation dynamics during pulsed laser microsurgery in vivo. Phys. Rev. Lett. 99, 158104.
Ishiyama, T., Fujikawa, S., Kurz, T. & Lauterborn, W. 2013 Nonequilibrium kinetic boundary condition at the vapor–liquid interface of argon. Phys. Rev. E 88, 042406.
Isselin, J.-C., Alloncle, A.-P. & Autric, M. 1998 On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena. J. Appl. Phys. 84, 57665771.
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.
Jungnickel, K.1995 Experimentelle Untersuchungen zur Kavitationsblasendynamik und ihrer Rolle bei der Disruption und Fragmentierung von biologischem Material (Experimental investigations of cavitation bubble dynamics and its role in disruption and fragmentation of biological material). Dissertation, Universität zu Lübeck.
Jungnickel, K. & Vogel, A. 1994 Interaction of two laser-induced cavitation bubbles. In Bubble Dynamics and Interface Phenomena (ed. Blake, J. R., Boulton-Stone, J. M. & Thomas, N. H.), pp. 4753. Kluwer.
Kersten, B., Ohl, C. D. & Prosperetti, A. 2003 Transient impact of a liquid column on a miscible liquid surface. Phys. Fluids 15, 821824.
Koch, P., Kurz, T., Parlitz, U. & Lauterborn, W. 2011 Bubble dynamics in a standing sound field: the bubble habitat. J. Acoust. Soc. Am. 130, 33703378.
Lauer, E., Hu, X. Y., Hickel, S. & Adams, N. A. 2012 Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Comput. Fluids 69, 119.
Lauterborn, W. 1968 Eigenfrequenzen von Gasblasen in Flüssigkeiten (Resonance frequencies of gas bubbles in liquids). Acustica 20, 1420.
Lauterborn, W. 1974 Kavitation durch Laserlicht (Cavitation by laser light). Acustica 31, 5178.
Lauterborn, W. 1982 Cavitation bubble dynamics – new tools for an intricate problem. Appl. Sci. Res. 38, 165178.
Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391399.
Lauterborn, W. & Hentschel, W. 1985 Cavitation bubble dynamics studied by high speed photography and holography: part one. Ultrasonics 23, 260268.
Lauterborn, W. & Kurz, T. 2010 Physics of bubble oscillations. Rep. Prog. Phys. 73, 106501.
Lauterborn, W., Kurz, T., Mettin, R. & Ohl, C. D. 1999 Experimental and theoretical bubble dynamics. Adv. Chem. Phys. 110, 295380.
Lauterborn, W. & Vogel, A. 1984 Modern optical techniques in fluid mechanics. Annu. Rev. Fluid Mech. 16, 223244.
Leighton, T. G. 1994 The Acoustic Bubble. Academic.
Lesser, M. B. & Field, J. E. 1983 The impact of compressible liquids. Annu. Rev. Fluid Mech. 15, 97122.
Lim, K. Y., Quinto-Su, P. A., Klaseboer, E., Khoo, B. C., Venugopalan, V. & Ohl, C. D. 2010 Nonspherical laser-induced cavitation bubbles. Phys. Rev. E 81, 016308.
Lin, H., Storey, B. D. & Szeri, A. J. 2002 Rayleigh–Taylor instability of violently collapsing bubbles. Phys. Fluids 14, 29252928.
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.
Lotfi, A., Vrabec, J. & Fischer, J. 2014 Evaporation from a free liquid surface. Intl J. Heat Mass Transfer 73, 303317.
Marek, R. & Straub, J. 2001 Analysis of the evaporation coefficient and the condensation coefficient of water. Intl J. Heat Mass Transfer 44, 3953.
Müller, S., Bachmann, M., Kröninger, D., Kurz, T. & Helluy, P. 2009 Comparison and validation of compressible flow simulations of laser-induced cavitation bubbles. Comput. Fluids 38, 18501862.
Müller, S., Helluy, P. & Ballmann, J. 2010 Numerical simulation of a single bubble by compressible two-phase fluids. Intl J. Numer. Meth. Fluids 62, 591631.
Noack, J. & Vogel, A. 1998 Single-shot spatially resolved chracterization of laser-induced shock waves in water. Appl. Opt. 37, 40924099.
Ochiai, N., Iga, Y., Nohmi, M. & Ikohagi, T. 2011 Numerical analysis of nonspherical bubble collapse behavior and induced impulsive pressure during first and second collapses near the wall boundary. J. Fluid Sci. Technol. 6, 860874.
Og̃uz, H. N. & Prosperetti, A. 1993 Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 257, 111145.
Ohl, C.-D., Arora, M., Ikink, R., de Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006 Sonoporation from jetting cavitation bubbles. Biophys. J. 91, 42854295.
Ohl, C. D., Kurz, T., Geisler, R., Lindau, O. & Lauterborn, W. 1999 Bubble dynamics, shock waves and sonoluminescence. Phil. Trans. R. Soc. Lond. A 357, 269294.
Ohl, C. D., Lindau, O. & Lauterborn, W. 1998 Luminescence from spherically and aspherically collapsing laser induced bubbles. Phys. Rev. Lett. 80, 393396.
Pepperkok, R., Zanetti, M., King, R., Delia, D., Ansorge, W., Philipson, L. & Schneider, C. 1988 Automatic microinjection system facilitates detection of growth inhibitory mRNA. Proc. Natl Acad. Sci. USA 85, 67486752.
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.
Plesset, M. S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 9698.
Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47, 283290.
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145185.
Popinet, S. & Zaleski, S. 2002 Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech. 464, 137163.
Prosperetti, A. & Plesset, M. S. 1984 The stability of an evaporating liquid surface. Phys. Fluids 27, 15901602.
Putterman, S. J. & Weninger, K. R. 2000 Sonoluminescence: how bubbles turn sound into light. Annu. Rev. Fluid Mech. 32, 445476.
Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 6 34, 9498.
Robinson, P. B., Blake, J. R., Kodama, T., Shima, A. & Tomita, Y. 2001 Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 89, 82258237.
Sankin, G. N., Yuan, F. & Zhong, P. 2010 Pulsating tandem microbubble for localized and directional single-cell membrane poration. Phys. Rev. Lett. 105, 078101.
Schanz, D., Metten, B., Kurz, T. & Lauterborn, W. 2012 Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence. New J. Phys. 14, 113019.
Séon, T. & Antkowiak, A. 2012 Large bubble rupture sparks fast liquid jets. Phys. Rev. Lett. 109, 014501.
Shaw, S. J., Jin, Y. H., Schiffers, W. P. & Emmony, D. C. 1996 The interaction of a single laser-generated cavity in water with a solid surface. J. Acoust. Soc. Am. 99, 28112824.
Shima, A., Tomita, Y., Gibson, D. C. & Blake, J. R. 1989 The growth and collapse of cavitation bubbles near composite surfaces. J. Fluid Mech. 203, 199214.
Stevenson, D. J., Gunn-Moore, F. J., Campbell, P. & Dholakia, K. 2010 Single cell optical transfection. J. R. Soc. Interface 7, 863871.
Storey, B. D. & Szeri, A. J. 2000 Water vapour, sonoluminescence and sonochemistry. Proc. R. Soc. Lond. A 456, 16851709.
Strube, H. W. 1971 Numerische Untersuchungen zur Stabilität nichtsphärisch schwingender Blasen (Numerical investigations on the stability of nonspherically oscillating bubbles). Acustica 25, 289303.
Suslick, K. S. & Flannigan, D. J. 2008 Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu. Rev. Phys. Chem. 59, 659683.
Testud-Giovanneschi, P., Alloncle, A. P. & Dufresne, D. 1990 Collective effects of cavitation: experimental study of bubble–bubble and bubble–shock wave interactions. J. Appl. Phys. 67, 35603564.
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2007 Experiments on bubble pinch-off. Phys. Fluids 19, 042101.
Tirlapur, U. K. & König, K. 2002 Cell biology – targeted transfection by femtosecond laser. Nature 418, 290291.
Tomita, Y., Robinson, P. B., Tong, R. P. & Blake, J. R. 2002 Growth and collapse of cavitation bubbles near a curved rigid boundary. J. Fluid Mech. 466, 259283.
Tomita, Y., Sato, K. & Shima, A. 1994 Interaction of two laser-produced cavitation bubbles near boundaries. In Bubble Dynamics and Interface Phenomena (ed. Blake, J. R., Boulton-Stone, J. M. & Thomas, N. H.), pp. 3345. Kluwer.
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.
Tomita, Y., Shima, A. & Sato, K. 1990 Dynamic behavior of two-laser-induced bubbles in water. Appl. Phys. Lett. 57, 234236.
Tong, R. P., Schiffers, W. P., Shaw, S. J., Blake, J. R. & Emmony, D. C. 1999 The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339361.
Venugopalan, V., Guerra, A. III, Nahen, K. & Vogel, A. 2002 Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation. Phys. Rev. Lett. 88, 078103.
Vogel, A., Busch, S. & Parlitz, U. 1996 Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100, 148165.
Vogel, A., Hentschel, W., Holzfuss, J. & Lauterborn, W. 1986 Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed Nd:YAG lasers. Ophthalmology 93, 12591269.
Vogel, A. & Lauterborn, W. 1988 Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84, 719731.
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.
Vogel, A., Linz, N., Freidank, S. & Paltauf, G. 2008 Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery. Phys. Rev. Lett. 100, 038102.
Vogel, A., Nahen, K., Theisen, D., Birngruber, R., Thomas, R. J. & Rockwell, B. A. 1999a Influence of optical aberrations on laser-induced plasma formation in water, and their consequences for intraocular photodisruption. Appl. Opt. 38, 36363643.
Vogel, A., Noack, J., Huettmann, G. & Paltauf, G. 2005 Mechanisms of femtosecond laser nano surgery of biological cells and tissues. Appl. Phys. B 81, 10151047.
Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D. X., Noojin, G. D., Rockwell, B. A. & Birngruber, R. 1999b Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68, 271280.
Wang, Q. X. & Blake, J. R. 2010 Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech. 659, 191224.
Wang, Q. X. & Blake, J. R. 2011 Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave. J. Fluid Mech. 679, 559581.
Wolfrum, B., Kurz, T., Mettin, R. & Lauterborn, W. 2003 Shock wave induced interaction of microbubbles and boundaries. Phys. Fluids 15, 29162922.
Wolfrum, B., Mettin, R., Kurz, T. & Lauterborn, W. 2002 Observations of pressure-wave-excited contrast agent bubbles in the vicinity of cells. Appl. Phys. Lett. 81, 50605062.
Yasui, K. 1997 Alternative model of single-bubble sonoluminescence. Phys. Rev. E 56, 67506760.
Zein, A., Hantke, M. & Warnecke, G. 2013 On the modeling and simulation of a laser-induced cavitation bubble. Intl J. Numer. Meth. Fluids 73, 172203.
Zhang, S., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147181.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed