Skip to main content
×
×
Home

Flow rate–pressure drop relation for deformable shallow microfluidic channels

  • Ivan C. Christov (a1) (a2), Vincent Cognet (a1) (a3), Tanmay C. Shidhore (a2) and Howard A. Stone (a1)
Abstract

Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate–pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop (Gervais et al., Lab on a Chip, vol. 6, 2006, pp. 500–507). Gervais et al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate–pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel’s height to its width and of the channel’s height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et al.’s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate–pressure drop relation compares favourably with experimental measurements.

Copyright
Corresponding author
Email addresses for correspondence: christov@purdue.edu, hastone@princeton.edu
References
Hide All
Abramowitz, M. & Stegun, I. A.(Eds) 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, vol. 55. National Bureau of Standards, http://www.nr.com/aands/.
Ando, K., Sanada, T., Inaba, K., Damazo, J. S., Shepherd, J. E., Colonius, T. & Brennen, C. E. 2011 Shock propagation through a bubbly liquid in a deformable tube. J. Fluid Mech. 671, 339363.
Anoop, R. & Sen, A. K. 2015 Capillary flow enhancement in rectangular polymer microchannels with a deformable wall. Phys. Rev. E 92, 013024.
Bahga, S. S., Bercovici, M. & Santiago, J. G. 2012 Robust and high-resolution simulations of nonlinear electrokinetic processes invariable cross-section channels. Electrophoresis 33, 30363051.
Bodnár, T., Galdi, G. P. & Nečasová, Š.(Eds) 2014 Fluid–Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics, Birkhäuser.
Bruus, H. 2008 Theoretical Microfluidics. Oxford University Press.
Chakraborty, D., Prakash, J. R., Friend, J. & Yeo, L. 2012 Fluid–structure interaction in deformable microchannels. Phys. Fluids 24, 102002.
Cheung, P., Toda-Peters, K. & Shen, A. Q. 2012 In situ pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices. Biomicrofluidics 6, 026501.
Conrad, W. A. 1969 Pressure–flow relationships in collapsible tubes. IEEE Trans. Biomed. Engng BME‐16, 284295.
Dendukuri, D., Gu, S. S., Pregibon, D. C., Hatton, T. A. & Doyle, P. S. 2007 Stop-flow lithography in a microfluidic device. Lab on a Chip 7, 818828.
Ducloué, L., Hazel, A. L., Thompson, A. B. & Juel, A. 2017 Reopening modes of a collapsed elasto-rigid channel. J. Fluid Mech. 819, 121146.
Duprat, C. & Stone, H. A. 2016 Fluid–Structure Interactions in Low-Reynolds-Number Flows. The Royal Society of Chemistry.
Elbaz, S. B. & Gat, A. D. 2014 Dynamics of viscous liquid within a closed elastic cylinder subject to external forces with application to soft robotics. J. Fluid Mech. 758, 221237.
Elbaz, S. B. & Gat, A. D. 2016 Axial creeping flow in the gap between a rigid cylinder and a concentric elastic tube. J. Fluid Mech. 806, 580602.
Fung, Y. C. 1997 Biomechanics: Circulation, 2nd edn. Springer.
Gervais, T., El-Ali, J., Günther, A. & Jensen, K. F. 2006 Flow-induced deformation of shallow microfluidic channels. Lab on a Chip 6, 500507.
Ghosal, S. 2002 Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. J. Fluid Mech. 459, 103128.
Gomez, M., Moulton, D. E. & Vella, D. 2017 Passive control of viscous flow via elastic snap-through. Phys. Rev. Lett. 119, 144502.
Grotberg, J. B. & Jensen, O. E. 2004 Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36, 121147.
Happel, J. R. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics, 2nd edn. Martinus Nijhoff Publishers.
Hardy, B. S., Uechi, K., Zhen, J. & Kavehpour, H. P. 2009 The deformation of flexible PDMS microchannels under a pressure driven flow. Lab on a Chip 9, 935938.
Holden, M. A., Kumar, S., Beskok, A. & Cremer, P. S. 2003 Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow. J. Micromech. Microengng 13, 412418.
Iliev, O., Mikelić, A. & Popov, P. 2008 On upscaling certain flows in deformable porous media. Multiscale Model. Simul. 7, 93123.
Johnson, K. L. 1985 Contact Mechanics. Cambridge University Press.
Johnston, I. D., McCluskey, D. K., Tan, C. K. L. & Tracey, M. C. 2014 Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microengng 24, 035017.
Katz, A. I., Chen, Y. & Moreno, A. H. 1969 Flow through a collapsible tube: experimental analysis and mathematical model. Biophys. J. 9, 12611279.
Kizilova, N., Hamadiche, M. & Gad-El-Hak, M. 2012 Mathematical models of biofluid flows in compliant ducts. Arch. Mech. 64, 6594.
Landau, L. D. & Lifshitz, E. M. 1986 Theory of Elasticity, 3rd edn. Butterworth-Heinemann.
Lauga, E., Stroock, A. D. & Stone, H. A. 2004 Three-dimensional flows in slowly varying planar geometries. Phys. Fluids 16, 30513062.
Lebovitz, N. R. 1982 Perturbation expansions on perturbed domains. SIAM Rev. 24, 381400.
Lötters, J. C., Olthuis, W., Veltink, P. H. & Bergveld, P. 1997 The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microengng 7, 145147.
Love, A. E. H. 1888 The small free vibrations and deformation of a thin elastic shell. Phil. Trans. R. Soc. Lond. A 179, 491546.
Mukherjee, U., Chakraborty, J. & Chakraborty, S. 2013 Relaxation characteristics of a compliant microfluidic channel under electroosmotic flow. Soft Matt. 9, 15621569.
Niu, P., Nablo, B. J., Bhadriraju, K. & Reyes, D. R. 2017 Uncovering the contribution of microchannel deformation to impedance-based flow rate measurements. Anal. Chem. 89, 1137211377.
Ozsun, O., Yakhot, V. & Ekinci, K. L. 2013 Non-invasive measurement of the pressure distribution in a deformable micro-channel. J. Fluid Mech. 734, R1.
Panda, P., Yuet, K. P., Dendukuri, D., Hatton, T. A. & Doyle, P. S. 2009 Temporal response of an initially deflected PDMS channel. New J. Phys. 11, 115001.
Pedley, T. J. 1980 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press.
Raj, A. & Sen, A. K. 2016 Flow-induced deformation of compliant microchannels and its effect on pressure–flow characteristics. Microfluid. Nanofluid. 20, 31.
Raj, M. K., DasGupta, S. & Chakraborty, S. 2017 Hydrodynamics in deformable microchannels. Microfluid. Nanofluid. 21, 70.
Rubinow, S. I. & Keller, J. B. 1972 Flow of a viscous fluid through an elastic tube with applications to blood flow. J. Theor. Biol. 34, 299313.
Schomburg, W. K. 2011 Introduction to Microsystem Design. Springer.
Seker, E., Leslie, D. C., Haj-Hariri, H., Landers, J. P., Utz, M. & Begley, M. R. 2009 Nonlinear pressure–flow relationships for passive microfluidic valves. Lab on a Chip 9, 26912697.
Small, M. K. & Nix, W. D. 1992 Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films. J. Mat. Res. 7, 15531563.
Sollier, E., Murray, C., Maoddi, P. & Di Carlo, D. 2011 Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab on a Chip 11, 37523765.
Squires, T. M. & Quake, S. R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 9771026.
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.
Sutera, S. P. & Skalak, R. 1993 The history of Poiseuille’s law. Annu. Rev. Fluid Mech. 25, 119.
Tavakol, B., Froehlicher, G., Holmes, D. P. & Stone, H. A. 2017 Extended lubrication theory: improved estimates of flow in channels with variable geometry. Proc. R. Soc. Lond. A 473, 20170234.
Timoshenko, S. & Woinowsky-Krieger, S. 1959 Theory of Plates and Shells, 2nd edn. McGraw-Hill.
Van Dyke, M. D. 1975 Perturbation Methods in Fluid Mechanics. Parabolic Press.
Whittaker, R. J., Heil, M., Jensen, O. E. & Waters, S. L. 2010 A rational derivation of a tube law from shell theory. Q. J. Mech. Appl. Maths 63, 465496.
Xia, Y. & Whitesides, G. M. 1998 Soft lithography. Annu. Rev. Mater. Sci. 28, 153184.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 21
Total number of PDF views: 332 *
Loading metrics...

Abstract views

Total abstract views: 593 *
Loading metrics...

* Views captured on Cambridge Core between 21st February 2018 - 18th August 2018. This data will be updated every 24 hours.