Abramowitz, M. & Stegun, I. A.(Eds) 1972
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, vol. 55. National Bureau of Standards, http://www.nr.com/aands/.
Ando, K., Sanada, T., Inaba, K., Damazo, J. S., Shepherd, J. E., Colonius, T. & Brennen, C. E.
2011
Shock propagation through a bubbly liquid in a deformable tube. J. Fluid Mech.
671, 339–363.

Anoop, R. & Sen, A. K.
2015
Capillary flow enhancement in rectangular polymer microchannels with a deformable wall. Phys. Rev. E
92, 013024.

Bahga, S. S., Bercovici, M. & Santiago, J. G.
2012
Robust and high-resolution simulations of nonlinear electrokinetic processes invariable cross-section channels. Electrophoresis
33, 3036–3051.

Bodnár, T., Galdi, G. P. & Nečasová, Š.(Eds) 2014
Fluid–Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics, Birkhäuser.

Bruus, H.
2008
Theoretical Microfluidics. Oxford University Press.

Chakraborty, D., Prakash, J. R., Friend, J. & Yeo, L.
2012
Fluid–structure interaction in deformable microchannels. Phys. Fluids
24, 102002.

Cheung, P., Toda-Peters, K. & Shen, A. Q.
2012
*In situ* pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices. Biomicrofluidics
6, 026501.

Conrad, W. A.
1969
Pressure–flow relationships in collapsible tubes. IEEE Trans. Biomed. Engng
BME‐16, 284–295.

Dendukuri, D., Gu, S. S., Pregibon, D. C., Hatton, T. A. & Doyle, P. S.
2007
Stop-flow lithography in a microfluidic device. Lab on a Chip
7, 818–828.

Ducloué, L., Hazel, A. L., Thompson, A. B. & Juel, A.
2017
Reopening modes of a collapsed elasto-rigid channel. J. Fluid Mech.
819, 121–146.

Duprat, C. & Stone, H. A.
2016
Fluid–Structure Interactions in Low-Reynolds-Number Flows. The Royal Society of Chemistry.

Elbaz, S. B. & Gat, A. D.
2014
Dynamics of viscous liquid within a closed elastic cylinder subject to external forces with application to soft robotics. J. Fluid Mech.
758, 221–237.

Elbaz, S. B. & Gat, A. D.
2016
Axial creeping flow in the gap between a rigid cylinder and a concentric elastic tube. J. Fluid Mech.
806, 580–602.

Fung, Y. C.
1997
Biomechanics: Circulation, 2nd edn. Springer.

Gervais, T., El-Ali, J., Günther, A. & Jensen, K. F.
2006
Flow-induced deformation of shallow microfluidic channels. Lab on a Chip
6, 500–507.

Ghosal, S.
2002
Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. J. Fluid Mech.
459, 103–128.

Gomez, M., Moulton, D. E. & Vella, D.
2017
Passive control of viscous flow via elastic snap-through. Phys. Rev. Lett.
119, 144502.

Grotberg, J. B. & Jensen, O. E.
2004
Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech.
36, 121–147.

Happel, J. R. & Brenner, H.
1983
Low Reynolds Number Hydrodynamics, 2nd edn. Martinus Nijhoff Publishers.

Hardy, B. S., Uechi, K., Zhen, J. & Kavehpour, H. P.
2009
The deformation of flexible PDMS microchannels under a pressure driven flow. Lab on a Chip
9, 935–938.

Holden, M. A., Kumar, S., Beskok, A. & Cremer, P. S.
2003
Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow. J. Micromech. Microengng
13, 412–418.

Iliev, O., Mikelić, A. & Popov, P.
2008
On upscaling certain flows in deformable porous media. Multiscale Model. Simul.
7, 93–123.

Johnson, K. L.
1985
Contact Mechanics. Cambridge University Press.

Johnston, I. D., McCluskey, D. K., Tan, C. K. L. & Tracey, M. C.
2014
Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microengng
24, 035017.

Katz, A. I., Chen, Y. & Moreno, A. H.
1969
Flow through a collapsible tube: experimental analysis and mathematical model. Biophys. J.
9, 1261–1279.

Kizilova, N., Hamadiche, M. & Gad-El-Hak, M.
2012
Mathematical models of biofluid flows in compliant ducts. Arch. Mech.
64, 65–94.

Landau, L. D. & Lifshitz, E. M.
1986
Theory of Elasticity, 3rd edn. Butterworth-Heinemann.

Lauga, E., Stroock, A. D. & Stone, H. A.
2004
Three-dimensional flows in slowly varying planar geometries. Phys. Fluids
16, 3051–3062.

Lebovitz, N. R.
1982
Perturbation expansions on perturbed domains. SIAM Rev.
24, 381–400.

Lötters, J. C., Olthuis, W., Veltink, P. H. & Bergveld, P.
1997
The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microengng
7, 145–147.

Love, A. E. H.
1888
The small free vibrations and deformation of a thin elastic shell. Phil. Trans. R. Soc. Lond. A
179, 491–546.

Mukherjee, U., Chakraborty, J. & Chakraborty, S.
2013
Relaxation characteristics of a compliant microfluidic channel under electroosmotic flow. Soft Matt.
9, 1562–1569.

Niu, P., Nablo, B. J., Bhadriraju, K. & Reyes, D. R.
2017
Uncovering the contribution of microchannel deformation to impedance-based flow rate measurements. Anal. Chem.
89, 11372–11377.

Ozsun, O., Yakhot, V. & Ekinci, K. L.
2013
Non-invasive measurement of the pressure distribution in a deformable micro-channel. J. Fluid Mech.
734, R1.

Panda, P., Yuet, K. P., Dendukuri, D., Hatton, T. A. & Doyle, P. S.
2009
Temporal response of an initially deflected PDMS channel. New J. Phys.
11, 115001.

Pedley, T. J.
1980
The Fluid Mechanics of Large Blood Vessels. Cambridge University Press.

Raj, A. & Sen, A. K.
2016
Flow-induced deformation of compliant microchannels and its effect on pressure–flow characteristics. Microfluid. Nanofluid.
20, 31.

Raj, M. K., DasGupta, S. & Chakraborty, S.
2017
Hydrodynamics in deformable microchannels. Microfluid. Nanofluid.
21, 70.

Rubinow, S. I. & Keller, J. B.
1972
Flow of a viscous fluid through an elastic tube with applications to blood flow. J. Theor. Biol.
34, 299–313.

Schomburg, W. K.
2011
Introduction to Microsystem Design. Springer.

Seker, E., Leslie, D. C., Haj-Hariri, H., Landers, J. P., Utz, M. & Begley, M. R.
2009
Nonlinear pressure–flow relationships for passive microfluidic valves. Lab on a Chip
9, 2691–2697.

Small, M. K. & Nix, W. D.
1992
Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films. J. Mat. Res.
7, 1553–1563.

Sollier, E., Murray, C., Maoddi, P. & Di Carlo, D.
2011
Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab on a Chip
11, 3752–3765.

Squires, T. M. & Quake, S. R.
2005
Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys.
77, 977–1026.

Stone, H. A., Stroock, A. D. & Ajdari, A.
2004
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech.
36, 381–411.

Sutera, S. P. & Skalak, R.
1993
The history of Poiseuille’s law. Annu. Rev. Fluid Mech.
25, 1–19.

Tavakol, B., Froehlicher, G., Holmes, D. P. & Stone, H. A.
2017
Extended lubrication theory: improved estimates of flow in channels with variable geometry. Proc. R. Soc. Lond. A
473, 20170234.

Timoshenko, S. & Woinowsky-Krieger, S.
1959
Theory of Plates and Shells, 2nd edn. McGraw-Hill.

Van Dyke, M. D.
1975
Perturbation Methods in Fluid Mechanics. Parabolic Press.

Whittaker, R. J., Heil, M., Jensen, O. E. & Waters, S. L.
2010
A rational derivation of a tube law from shell theory. Q. J. Mech. Appl. Maths
63, 465–496.

Xia, Y. & Whitesides, G. M.
1998
Soft lithography. Annu. Rev. Mater. Sci.
28, 153–184.