Skip to main content Accessibility help
×
Home

Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake

  • J. A. Bourgeois (a1), B. R. Noack (a2) and R. J. Martinuzzi (a1)

Abstract

We experimentally investigate the three-dimensional wake behind a finite wall-mounted square cylinder at $\mathit{Re}= 12\hspace{0.167em} 000$ and aspect ratio of 4. Focus is placed on the base flow and oscillatory fluctuation. Time-resolved three-dimensional velocity fields are constructed from high-frame-rate particle image velocimetry (PIV) and simultaneously recorded surface pressure measurements. All three velocity components are resolved in a rectangular near-wake region by two orthogonal dense arrays of parallel PIV planes. A key enabler is a generalized phase average incorporating a slowly varying base flow, a variable oscillation amplitude and higher harmonics. These generalizations reduce the instantaneous residual 30 % below those of a traditional phase average. Moreover, the resolved variations reveal analytical constraints of the mean flow and oscillation levels, such as the mean-field paraboloid. The proposed methodology for generalized phase averaging and for construction of three-dimensional velocity fields from two-dimensional PIV data is applicable to a large class of turbulent flows with oscillatory dynamics.

Copyright

Corresponding author

Email address for correspondence: rmartinu@ucalgary.ca

References

Hide All
Adrian, R. & Moin, P. 1988 Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190, 531559.
Bonnet, J.-P. (Ed.) 1998 Eddy Structure Identification. CISM Courses and Lectures, vol. 353. Springer.
Borée, J. 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp. Fluids 35, 188192.
Bourgeois, J. A., Sattari, P. & Martinuzzi, R. J. 2011 Alternating half-loop shedding in the turbulent wake of a finite surface-mounted square cylinder with a thin boundary layer. Phys. Fluids 23, 095101.
Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids A 3, 23372354.
Dušek, J., Le Gal, P. & Fraunié, P. 1994 A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 5980.
Farge, M., Schneider, K., Pellegrino, G., Wray, A. & Rogallo, B. 2003 Coherent vortex extraction in three-dimensional homogeneous turbulence: comparison between CVS–wavelet and POD–Fourier decompositions. Phys. Fluids 15, 28862896.
Fletcher, C. A. J. 1984 Computational Galerkin Methods, 1st edn. Springer.
Glauser, M., Eaton, E., Taylor, J., Cole, D., Ukeiley, L., Citrini, J. H., George, W. K. & Stokes, S. 1999 Low-dimensional descriptions of turbulent flow: experiment and modelling. In AIAA Fluids 1999 Conference and Exhibit. Norfolk, VA, USA, June 28–July 1, 1999, AIAA paper 99-3699.
Haller, G. 2001 Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248277.
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.
Holmes, P., Lumley, J. L., Berkooz, G. & Rowley, C. W. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. Tech. Rep. CTR-S88. Center for Turbulence Research.
Kasten, J., Hotz, I., Noack, B. R. & Hege, H.-C. 2012a Vortex merge graphs in two-dimensional unsteady flow fields. In Proceedings of the Joint EG/IEEE Symposium on Visualization (EuroVis 2012).
Kasten, J., Reininghaus, J., Hotz, I., Hege, H.-C., Noack, B. R., Daviller, G., Comte, P. & Morzynśki, M. 2012b Acceleration feature points of unsteady shear flows. SIAM J. Appl. Dyn. Syst. (submitted).
Liu, J. T. C. 1989 Coherent structures in transitional and turbulent free shear flows. Annu. Rev. Fluid Mech. 21, 285315.
Luchtenburg, D. M., Günter, B., Noack, B. R., King, R. & Tadmor, G. 2009 A generalized mean-field model of the natural and actuated flows around a high-lift configuration. J. Fluid Mech. 623, 283316.
Lugt, H. J. 1995 Vortex Flow in Nature and Technology, reprint edn. Krieger Publishing Company.
Noack, B. R. 2006 Niederdimensionale Galerkin–Modelle für laminare und transitionelle freie Scherströmungen (translation: low-dimensional Galerkin models of laminar and transitional free shear flows). Habilitation thesis, Berlin Institute of Technology, Germany.
Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
Noack, B. R., Morzyński, M. & Tadmor, G. (Eds) 2011 Reduced-Order Modelling for Flow Control. CISM Courses and Lectures, vol. 528. Springer.
Noack, B. R., Papas, P. & Monkewitz, P. A. 2005 The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339365.
Noack, B. R., Schlegel, M., Morzyński, M. & Tadmor, G. 2010 System reduction strategy for Galerkin models of fluid flows. Intl J. Numer. Meth. Fluids 63 (2), 231248.
Oberleithner, K., Sieber, M., Nayeri, C. N., Paschereit, C. O., Petz, C., Hege, H.-C., Noack, B. R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.
Perrin, R., Braza, M., Cid, E., Cazin, S., Moradei, F., Barthet, A., Sevrain, A. & Hoarau, Y. 2006 Near-wake turbulence properties in the high Reynolds number incompressible flow around a circular cylinder measured by two- and three-component PIV. Flow Turbul. Combust. 77, 185204.
Perry, A. E. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19, 125155.
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1986 Numerical Recipes. The Art of Scientific Computing. Cambridge University Press, Sec. 3.6, pp. 95–97.
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 645, 115127.
Rowley, C. W. & Williams, D. R. 2006 Dynamics and control of high-Reynolds number flows over open cavities. Annu. Rev. Fluid Mech. 38, 251276.
Sattari, P., Bourgeois, J. A. & Martinuzzi, R. J. 2012 On the vortex dynamics in the wake of a finite surface-mounted square cylinder. Exp. Fluids 52 (5), 11491167.
Schlegel, M., Noack, B. R., Jordan, P., Dillmann, A., Gröschel, E., Schröder, W., Wei, M., Freund, J. B., Lehmann, O. & Tadmor, G. 2012 On least-order flow representations for aerodynamics and aeroacoustics. J. Fluid Mech. 697, 367398.
Schmid, P. J. 2010 Dynamic mode decomposition for numerical and experimental data. J. Fluid Mech. 656, 528.
Tadmor, G., Lehmann, O., Noack, B. R., Cordier, L., Delville, J., Bonnet, J.-P. & Morzyński, M. 2011 Reduced-order models for closed-loop wake control. Phil. Trans. R. Soc. A 369, 15131524.
Tadmor, G., Lehmann, O., Noack, B. R. & Morzyński, M. 2010 Mean field representation of the natural and actuated cylinder wake. Phys. Fluids 22, 034102.
Taylor, J. A. & Glauser, M. N. 2004 Towards practical flow sensing and control via POD and LSE based low-dimensional tools. Trans. ASME: J. Fluids Engng 126, 337345.
Wang, H. & Zhou, Y. 2009 The finite-length square cylinder near-wake. J. Fluid Mech. 638, 453490.
Wang, H., Zhou, Y., Chan, C. K. & Lam, K. 2006 Effect of initial conditions on interaction between a boundary layer and a wall-mounted finite-length-cylinder wake. Phys. Fluids 18, 065106.
Westerweel, J. 2000 Theoretical analysis of the measurement precision in particle image velocimetry. Exp. Fluids 29, S3S12.
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake

  • J. A. Bourgeois (a1), B. R. Noack (a2) and R. J. Martinuzzi (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.