Skip to main content Accessibility help
×
Home

Gliding on a layer of air: impact of a large-viscosity drop on a liquid film

  • K. R. Langley (a1) and S. T. Thoroddsen (a1)

Abstract

In this paper we contrast the early impact stage of a highly viscous drop onto a liquid versus a solid substrate. Water drops impacting at low velocities can rebound from a solid surface without contact. This dynamic is mediated through lubrication of a thin air layer between the liquid and solid. Drops can also rebound from a liquid surface, but only for low Weber numbers. Impacts at higher velocities in both cases lead to circular contacts which entrap an air disc under the centre of the drop. Increasing the drop viscosity produces extended air films for impacts on a smooth solid surface even for much larger velocities. These air films eventually break through random wetting contacts with the solid. Herein we use high-speed interferometry to study the extent and thickness profile of the air film for a large-viscosity drop impacting onto a viscous film of the same liquid. We demonstrate a unified scaling of the centreline height of the air film for impacts on both solid and liquid, when using the effective impact velocity. On the other hand, we show that the large-viscosity liquid film promotes air films of larger extent. Furthermore, the rupture behaviour becomes fundamentally different, with the air film between the two compliant surfaces being more stable, lacking the random wetting patches seen on the solid. We map the parameter range where these air films occur and explore the transition from gliding to ring contact at the edge of the drop dimple. After the air film ruptures, the initial contraction occurs very rapidly and for viscosities greater than 100 cSt the retraction velocity of the air film is ${\sim}0.3~\text{m}~\text{s}^{-1}$ , independent of the liquid viscosity and impact velocity, in sharp contrast with theoretical predictions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Gliding on a layer of air: impact of a large-viscosity drop on a liquid film
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Gliding on a layer of air: impact of a large-viscosity drop on a liquid film
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Gliding on a layer of air: impact of a large-viscosity drop on a liquid film
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: Sigurdur.Thoroddsen@KAUST.edu.sa

References

Hide All
Bouwhuis, W., van der Veen, R. C. A., Tran, T., Keij, D. L., Winkels, K. G., Peters, I. R., van der Meer, D., Sun, C., Snoeijer, J. H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109, 264501.
Bouwhuis, W., Huang, X., Chan, C. U., Frommhold, P. E., Ohl, C.-D., Lohse, D., Snoeijer, J. H. & van der Meer, D. 2016 Impact of a high-speed train of microdrops on a liquid pool. J. Fluid Mech. 792, 850868.
Crooks, J., Marsh, B., Turchetta, R., Taylor, K., Chan, W., Lahav, A. & Fenigstein, A. 2013 Kirana: a solid-state megapixel uCMOS image sensor for ultrahigh speed imaging. Proc. SPIE 8659, 865903.
Hendrix, M. H. W., Bouwhuis, W., van der Meer, D., Lohse, D. & Snoeijer, J. H. 2016 Universal mechanism for air entrainment during liquid impact. J. Fluid Mech. 789, 708725.
Hicks, P. D. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.
Hicks, P. D. & Purvis, R. 2011 Air cushioning in droplet impacts with liquid layers and other droplets. Phys. Fluids 23 (6), 062104.
Howison, S. D., Ockendon, J. R., Oliver, J. M., Purvis, R. & Smith, F. T. 2005 Droplet impact on a thin fluid layer. J. Fluid Mech. 542, 123.
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15, 16501657.
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.
Kolinski, J. M., Mahadevan, L. & Rubinstein, S. M. 2014a Drops can bounce from perfectly hydrophilic surfaces. Eur. Phys. Lett. 108, 24001.
Kolinski, J. M., Mahadevan, L. & Rubinstein, S. M. 2014b Lift-off instability in the impact of a drop on a solid surface. Phys. Rev. Lett. 112, 134501.
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.
Korobkin, A. A., Ellis, A. S. & Smith, F. T. 2008 Trapping of air in impact between a body and shallow water. J. Fluid Mech. 611, 365394.
Langley, K., Li, E. Q. & Thoroddsen, S. T. 2017 Impact of ultra-viscous drops: air-film gliding and extreme wetting. J. Fluid Mech. 813, 647666.
Langley, K. R., Li, E. Q., Vakarelski, I. U. & Thoroddsen, S. T. 2018 The air entrapment under a drop impacting on a nano-rough surface. Soft Matt. 14, 75867596.
Li, E. Q., Langley, K. R., Tian, Y. S., Hicks, P. D. & Thoroddsen, S. T. 2017 Double contact during drop impact on a solid under reduced air pressure. Phys. Rev. Lett. 119, 214502.
Li, E. Q. & Thoroddsen, S. T. 2015 Time-resolved imaging of compressible air disc under drop impacting a solid surface. J. Fluid Mech. 780, 636648.
Li, E. Q., Vakarelski, I. U. & Throddsen, S. T. 2015 Probing the nano-scale: the first contact of an impacting drop. J. Fluid Mech. 785, R2.
Mandre, S., Mani, M. & Brenner, M. P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102, 134502.
Marston, J. O., Vakarelski, I. U. & Thoroddsen, S. T. 2011 Bubble entrapment during sphere impact onto quiescent liquid surfaces. J. Fluid Mech. 680, 660670.
Philippi, J., Lagrée, P.-Y. & Antkowiak, A. 2016 Drop impact on a solid surface: short-time self-similarity. J. Fluid Mech. 795, 96135.
Reyssat, E. & Quéré, D. 2006 Bursting of a fluid film in a viscous environment. Europhys. Lett. 76 (2), 236242.
de Ruiter, J., Oh, J. M., van den Ende, D. & Mugele, F. 2012 Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108, 074505.
de Ruiter, J., van den Ende, D. & Mugele, F. 2015 Air cushioning in droplet impact. II. Experimental characterization of the air film evolution. Phys. Fluids 27, 012105.
Smith, F. T., Li, L. & Wu, G. X. 2003 Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482, 291318.
Speirs, N. B., Pan, Z., Belden, J. & Truscott, T. T. 2018 The water entry of multi-droplet streams and jets. J. Fluid Mech. 844, 10841111.
Tang, X., Saha, A., Law, C. K. & Sun, C. 2018 Bouncing-to-merging transition in drop impact on liquid film: role of liquid viscosity. Langmuir 34, 26542662.
Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.
Thoroddsen, S. T., Takehara, K., Etoh, T. G., Ootsuka, N. & Hatsuki, Y. 2005 The air bubble entrapped under a drop impacting a solid surface. J. Fluid Mech. 545, 203212.
Thoroddsen, S. T., Thoraval, M.-J., Takehara, K. & Etoh, T. G. 2011 Droplet splashing by a slingshot mechanism. Phys. Rev. Lett. 106, 034501.
Thoroddsen, S. T., Thoraval, M.-J., Takehara, K. & Etoh, T. G. 2012 Micro-bubble morphologies following drop impacts onto a pool surface. J. Fluid Mech. 708, 469479.
Tran, T., De Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.
van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85, 026315.
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Langley and Thoroddsen supplementary material
Langley and Thoroddsen supplementary material

 Unknown (154 KB)
154 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed