Skip to main content Accessibility help

Ill posedness in modelling two-dimensional morphodynamic problems: effects of bed slope and secondary flow

  • Víctor Chavarrías (a1), Ralph Schielen (a2) (a3), Willem Ottevanger (a4) and Astrid Blom (a1)


A two-dimensional model describing river morphodynamic processes under mixed-size sediment conditions is analysed with respect to its well posedness. Well posedness guarantees the existence of a unique solution continuously depending on the problem data. When a model becomes ill posed, infinitesimal perturbations to a solution grow infinitely fast. Apart from the fact that this behaviour cannot represent a physical process, numerical simulations of an ill-posed model continue to change as the grid is refined. For this reason, ill-posed models cannot be used as predictive tools. One source of ill posedness is due to the simplified description of the processes related to vertical mixing of sediment. The current analysis reveals the existence of two additional mechanisms that lead to model ill posedness: secondary flow due to the flow curvature and the effect of gravity on the sediment transport direction. When parametrising secondary flow, accounting for diffusion in the transport of secondary flow intensity is a requirement for obtaining a well-posed model. When considering the theoretical amount of diffusion, the model predicts instability of perturbations that are incompatible with the shallow water assumption. The effect of gravity on the sediment transport direction is a necessary mechanism to yield a well-posed model, but not all closure relations to account for this mechanism are valid under mixed-size sediment conditions. Numerical simulations of idealised situations confirm the results of the stability analysis and highlight the consequences of ill posedness.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ill posedness in modelling two-dimensional morphodynamic problems: effects of bed slope and secondary flow
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ill posedness in modelling two-dimensional morphodynamic problems: effects of bed slope and secondary flow
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ill posedness in modelling two-dimensional morphodynamic problems: effects of bed slope and secondary flow
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence:


Hide All
Armanini, A. & di Silvio, G. 1988 A one-dimensional model for the transport of a sediment mixture in non-equilibrium conditions. J. Hydraul. Res. 26 (3), 275292.
Ashida, K. & Michiue, M. 1971 An investigation of river bed degradation downstream of a dam. In Proceedings of the 14th IAHR World Congress, 29 August – 3 September, Paris, France, vol. 3, pp. 247255.
Baar, A. W., de Smit, J., Uijttewaal, W. S. J. & Kleinhans, M. G. 2018 Sediment transport of fine sand to fine gravel on transverse bed slopes in rotating annular flume experiments. Water Resour. Res. 54 (1), 1945.
Balmforth, N. J. & Mandre, S. 2004 Dynamics of roll waves. J. Fluid Mech. 514, 133.
Balmforth, N. J. & Vakil, A. 2012 Cyclic steps and roll waves in shallow water flow over an erodible bed. J. Fluid Mech. 695, 3562.
Banks, J., Brooks, J., Cairns, G., Davis, G. & Stacey, P. 1992 On Devaney’s definition of chaos. Am. Math. Mon. 99 (4), 332334.
Barker, T. & Gray, J. M. N. T. 2017 Partial regularisation of the incompressible 𝜇-rheology for granular flow. J. Fluid Mech. 828, 532.
Barker, B., Johnson, M. A., Noble, P., Rodrigues, L. M. & Zumbrun, K. 2017a Note on the stability of viscous roll waves. C. R. Méc. 345 (2), 125129.
Barker, B., Johnson, M. A., Noble, P., Rodrigues, L. M. & Zumbrun, K. 2017b Stability of viscous St. Venant roll waves: from onset to infinite Froude number limit. J. Nonlinear Sci. 27 (1), 285342.
Barker, T., Schaeffer, D. G., Bohorquez, P. & Gray, J. M. N. T. 2015 Well-posed and ill-posed behaviour of the 𝜇-rheology for granular flow. J. Fluid Mech. 779, 794818.
Beeler, M., Gosper, R. W. & Schroeppel, R. C. 1972 HAKMEM, MIT AI Memo 239. Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
Begnudelli, L., Valiani, A. & Sanders, B. F. 2010 A balanced treatment of secondary currents, turbulence and dispersion in a depth-integrated hydrodynamic and bed deformation model for channel bends. Adv. Water Resour. 33 (1), 1733.
Bell, R. G. & Sutherland, A. J. 1983 Nonequilibrium bedload transport by steady flows. J. Hydraul. Eng. 109 (3), 351367.
van Bendegom, L. 1947 Eenige beschouwingen over riviermorphofogie en rivierverbetering. De Ingenieur 59 (4), 111; (in Dutch).
Blanckaert, K. 2009 Saturation of curvature-induced secondary flow, energy losses, and turbulence in sharp open-channel bends: laboratory experiments, analysis, and modeling. J. Geophys. Res. 114 (F3), F03015.
Blanckaert, K. & Graf, W. H. 2004 Momentum transport in sharp open-channel bends. J. Hydraul. Eng. 130 (3), 186198.
Blanckaert, K. & de Vriend, H. J. 2003 Nonlinear modeling of mean flow redistribution in curved open channels. Water Resour. Res. 39 (12), 1375.
Blanckaert, K. & de Vriend, H. J. 2004 Secondary flow in sharp open-channel bends. J. Fluid Mech. 498, 353380.
Blom, A. 2008 Different approaches to handling vertical and streamwise sorting in modeling river morphodynamics. Water Resour. Res. 44 (3), W03415.
Blom, A., Arkesteijn, L., Chavarrías, V. & Viparelli, E. 2017 The equilibrium alluvial river under variable flow and its channel-forming discharge. J. Geophys. Res. 122 (10), 19241948.
Blom, A., Viparelli, E. & Chavarrías, V. 2016 The graded alluvial river: profile concavity and downstream fining. Geophys. Res. Lett. 43 (12), 62856293.
Booij, R. & Pennekamp, J. G. S.1983 Simulation of main flow and secondary flow in a curved open channel. Tech. Rep. 10-83, Laboratory of Fluid Mechanics, Faculty of Civil Engineering and Geosciences, Delft University of Technology.
Booij, R. & Pennekamp, J. G. S.1984 Measurements of the rate of adjustement of the secondary flow in a curved open channel with varying discharge. Tech. Rep. 15-84, Laboratory of Fluid Mechanics, Faculty of Civil Engineering and Geosciences, Delft University of Technology.
Bradshaw, P. 1987 Turbulent secondary flows. Annu. Rev. Fluid Mech. 19 (1), 5374.
Bressan, A. 2011 Hyperbolic conservation laws. In Mathematics of Complexity and Dynamical Systems (ed. Meyers, R. A.), chap. 44, pp. 729739. Springer.
Brundrett, E. & Baines, W. D. 1964 The production and diffusion of vorticity in duct flow. J. Fluid Mech. 19 (3), 375394.
Callander, R. A. 1969 Instability and river channels. J. Fluid Mech. 36 (3), 465480.
Cao, Z. & Carling, P. A. 2002 Mathematical modelling of alluvial rivers: reality and myth. Part 1: general review. Proc. Inst. Civil Engrs Water Maritime Engng 154 (3), 207219.
Castro, M. J., Fernández-Nieto, E. D., Ferreiro, A. M., García-Rodríguez, J. A. & Parés, C. 2009 High order extensions of Roe schemes for two-dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39 (1), 67114.
Chavarrías, V., Stecca, G. & Blom, A. 2018 Ill-posedness in modelling mixed-sediment river morphodynamics. Adv. Water Resour. 114, 219235.
Colombini, M. 1993 Turbulence-driven secondary flows and formation of sand ridges. J. Fluid Mech. 254, 701719.
Colombini, M., Seminara, G. & Tubino, M. 1987 Finite-amplitude alternate bars. J. Fluid Mech. 181, 213232.
Colombini, M. & Stocchino, A. 2005 Coupling or decoupling bed and flow dynamics: fast and slow sediment waves at high froude numbers. Phys. Fluids 17 (3), 036602.
Colombini, M. & Stocchino, A. 2011 Ripple and dune formation in rivers. J. Fluid Mech. 673, 121131.
Colombini, M. & Stocchino, A. 2012 Three-dimensional river bed forms. J. Fluid Mech. 695, 6380.
Cordier, S., Le, M. & de Luna, T. M. 2011 Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can) help. Adv. Water Resour. 34 (8), 980989.
Courant, R., Friedrichs, K. & Lewy, H. 1928 Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Annal. 100, 3274 (in German).
Courant, R. & Hilbert, D. 1989 Methods of Mathematical Physics, Differential Equations, vol. 2. Wiley.
Dafermos, C. M. 2010 Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. Grundlehren der mathematischen Wissenschaften, vol. 325. Springer.
Dafermos, C. M. 2016 Introduction to the theory of hyperbolic conservation laws. In Handbook of Numerical Methods for Hyperbolic Problems, Handbook of Numerical Analysis (ed. Abgrall, R. & Shu, C.-W.), vol. 17, chap. 1, pp. 118. Elsevier.
Deigaard, R. & Fredsøe, J. 1978 Longitudinal grain sorting by current in alluvial streams. Nord. Hydrol. 9 (1), 716.
Devaney, R. L. 1989 An Introduction to Chaotic Dynamical Systems. Addison-Wesley.
Dietrich, W. E. & Smith, J. D. 1984 Bed load transport in a river meander. Water Resour. Res. 20 (10), 13551380.
Einstein, H. A.1950 The bed-load function for sediment transportation in open channel flows. Tech. Bull. 1026, US Department of Agriculture, Soil Conservation Service.
Einstein, H. A. & Li, H. 1958 Secondary currents in straight channels. EOS Trans. AGU 39 (6), 10851088.
Elder, J. W. 1959 The dispersion of marked fluid in turbulent shear flow. J. Fluid Mech. 5 (4), 544560.
Engelund, F. 1974 Flow and bed topography in channel bends. J. Hydraulics Div. 100 (11), 16311648.
Engelund, F. 1975 Instability of flow in a curved alluvial channel. J. Fluid Mech. 72 (1), 145160.
Engelund, F. & Hansen, E.1967 Monograph on sediment transport in alluvial streams. Tech. Rep., Hydraulics Laboratory, Technical University of Denmark.
Engelund, F. & Skovgaard, O. 1973 On the origin of meandering and braiding in alluvial streams. J. Fluid Mech. 57 (2), 289302.
Erdogan, M. E. & Chatwin, P. C. 1967 The effects of curvature and buoyancy on the laminar dispersion of solute in a horizontal tube. J. Fluid Mech. 29 (3), 465484.
Exner, F. M. 1920 Zur Physik der Dünen. Akad. Wiss. Wien Math. Naturwiss 129 (2a), 929952 (in German).
Falconer, R. A. 1980 Modelling of planform influence on circulation in harbours. In Proceedings of the 17th International Conference on Coastal Eng. 23–28 March, Sydney, Australia, pp. 27262744. ASCE.
Fischer, H. B. 1967 The mechanics of dispersion in natural streams. J. Hydraulics Div. 96 (6), 187216.
Fischer, H. B. 1969 The effect of bends on dispersion in streams. Water Resour. Res. 5 (2), 496506.
Fischer, H. B. 1973 Longitudinal dispersion and turbulent mixing in open-channel flow. Annu. Rev. Fluid Mech. 5 (1), 5978.
Flokstra, C. 1977 The closure problem for depth-averaged 2-D flow. In Proceedings of the 18th IAHR World Congress, 15–19 August, Baden-Baden, Germany.
Fowler, A. C. 1997 Mathematical Models in the Applied Sciences, Cambridge Texts in Applied Mathematics. Cambridge University Press.
Francalanci, S. & Solari, L. 2007 Gravitational effects on bed load transport at low Shields stress: experimental observations. Water Resour. Res. 43 (3), W03424.
Francalanci, S. & Solari, L. 2008 Bed-load transport equation on arbitrarily sloping beds. J. Hydraul. Eng. 134 (1), 110115.
Fredsøe, J. 1978 Meandering and braiding of rivers. J. Fluid Mech. 84 (4), 609624.
Garegnani, G., Rosatti, G. & Bonaventura, L. 2011 Free surface flows over mobile bed: mathematical analysis and numerical modeling of coupled and decoupled approaches. Commun. Appl. Ind. Math. 2 (1), e371.
Garegnani, G., Rosatti, G. & Bonaventura, L. 2013 On the range of validity of the Exner-based models for mobile-bed river flow simulations. J. Hydraul. Res. 51 (4), 380391.
Gavrilakis, S. 1992 Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. J. Fluid Mech. 244, 101129.
Gessner, F. B. & Jones, J. B. 1965 On some aspects of fully-developed turbulent flow in rectangular channels. J. Fluid Mech. 23, 689713.
Giri, S. & Shimizu, Y. 2006 Numerical computation of sand dune migration with free surface flow. Water Resour. Res. 42 (10), W10422.
Hadamard, J. S. 1923 Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press.
Hirano, M. 1971 River bed degradation with armoring. Proc. Japan. Soc. Civ. Engrs 195, 5565.
Hoey, T. B. & Ferguson, R. I. 1994 Numerical simulation of downstream fining by selective transport in gravel bed rivers: model development and illustration. Water Resour. Res. 30 (7), 22512260.
Holley, E. R.1971 Transverse mixing in rivers. Tech. Rep. S132, Delft Hydraulics Laboratory, Delft, The Netherlands.
Ikeda, S. & Nishimura, T. 1985 Bed topography in bends of sand-silt rivers. J. Hydraul. Eng. 111 (11), 13971410.
Ikeda, S. & Nishimura, T. 1986 Flow and bed profile in meandering sand-silt rivers. J. Hydraul. Eng. 112 (7), 562579.
Ikeda, S., Parker, G. & Sawai, K. 1981 Bend theory of river meanders. Part 1. Linear development. J. Fluid Mech. 112, 363377.
Jagers, B.2003 Modelling planform changes of braided rivers. PhD thesis, University of Twente, Enschede, The Netherlands.
Jain, S. C. 1992 Note on lag in bedload discharge. J. Hydraul. Eng. 118 (6), 904917.
Javernick, L., Hicks, D. M., Measures, R., Caruso, B. & Brasington, J. 2016 Numerical modelling of braided rivers with structure-from-motion-derived terrain models. River Res. Appl. 32 (5), 10711081.
Javernick, L., Redolfi, M. & Bertoldi, W. 2018 Evaluation of a numerical model’s ability to predict bed load transport observed in braided river experiments. Adv. Water Resour. 115, 207218.
Jeffreys, H. 1925 The flow of water in an inclined channel of rectangular section. Lond. Edinb. Dublin Phil. Mag. J. Sci. 49 (293), 793807.
Johannesson, H. & Parker, G. 1989 Secondary flow in mildly sinuous channel. J. Hydraul. Eng. 115 (3), 289308.
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.
Joseph, D. & Saut, J. 1990 Short-wave instabilities and ill-posed initial-value problems. Theor. Comput. Fluid Mech. 1 (4), 191227.
Kabanikhin, S. I. 2008 Definitions and examples of inverse and ill-posed problems. J. Inv. Ill-Posed Problems 16, 317357.
Kalkwijk, J. P. T. & Booij, R. 1986 Adaptation of secondary flow in nearly-horizontal flow. J. Hydraul. Res. 24 (1), 1937.
Kalkwijk, J. P. T. & de Vriend, H. J. 1980 Computation of the flow in shallow river bends. J. Hydraul. Res. 18 (4), 327342.
Kitanidis, P. K. & Kennedy, J. F. 1984 Secondary current and river-meander formation. J. Fluid Mech. 144, 217229.
Knowles, J. K. & Sternberg, E. 1975 On the ellipticity of the equations of nonlinear elastostatics for a special material. J. Elast. 5 (3), 341361.
Knowles, J. K. & Sternberg, E. 1976 On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Ration. Mech. Anal. 63 (4), 321336.
Koch, F. G. & Flokstra, C. 1981 Bed level computations for curved alluvial channels. In Proceedings of the 19th IAHR World Congress, 2–7 February, New Delhi, India, pp. 357364.
Kyong, O. B. & Il, W. S. 2016 On the methods for determining the transverse dispersion coefficient in river mixing. Adv. Water Resour. 90, 19.
Lanzoni, S. & Tubino, M. 1999 Grain sorting and bar instability. J. Fluid Mech. 393, 149174.
Lax, P. D. 1980 On the notion of hyperbolicity. Commun. Pure Appl. Math. 33 (3), 395397.
Legleiter, C. J. & Kyriakidis, P. C. 2006 Forward and inverse transformations between Cartesian and channel-fitted coordinate systems for meandering rivers. Math. Geol. 38 (8), 927958.
Lesser, G., Roelvink, J., van Kester, J. & Stelling, G. 2004 Development and validation of a three-dimensional morphological model. Coastal Eng. 51 (8–9), 883915.
LeVeque, R. J. 2004 Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, vol. 31. Cambridge University Press.
Lien, H. C., Hsieh, T. Y., Yang, J. C. & Yeh, K. C. 1999 Bend-flow simulation using 2D depth-averaged model. J. Hydraul. Eng. 125 (10), 10971108.
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20 (2), 130141.
Lyn, D. A. & Altinakar, M. 2002 St. Venant-Exner equations for near-critical and transcritical flows. J. Hydraul. Eng. 128 (6), 579587.
Meyer-Peter, E. & Müller, R. 1948 Formulas for bed-load transport. In Proceedings of the 2nd IAHR World Congress, 6–9 June, Stockholm, Sweden, pp. 3964.
Mosselman, E. 2005 Basic equations for sediment transport in CFD for fluvial morphodynamics. In Computational Fluid Dynamics: Applications in Environmental Hydraulics (ed. Bates, P. D., Lane, S. N. & Ferguson, R. I.), chap. 4, pp. 7189. Wiley.
Mosselman, E., Sloff, K. & van Vuren, S. 2008 Different sediment mixtures at constant flow conditions can produce the same celerity of bed disturbances. In River Flow 2008, Proceedings of the International Conference on Fluvial Hydraulics, 3–5 September, Cesme, Izmir, Turkey (ed. Altinakar, M., Kokpinar, M. A., Aydin, İ., Cokgor, Ş. & Kirgoz, S.), vol. 2, pp. 13731377. Kubaba Congress Department and Travel Services.
Murray, A. B. 2007 Reducing model complexity for explanation and prediction. Geomorphology 90 (3–4), 178191.
Murray, A. B. & Paola, C. 1994 A cellular model of braided rivers. Nature 371 (54), 5457.
Murray, A. B. & Paola, C. 1997 Properties of a cellular braided-stream model. Earth Surf. Process. Landf. 22 (11), 10011025.
Nezu, I. & Nakagawa, H. 1984 Cellular secondary currents in straight conduit. J. Hydraul. Eng. 110 (2), 173193.
Nikuradse, J. 1930 Untersuchungen über turbulente Strömungen in nicht kreisförmigen Rohren. Ingenieur-Archiv 1 (3), 306332 (in German).
Olesen, K. W.1982 Influence of secondary flow on meandering rivers. Tech. Rep. 1–82, Laboratory of Fluid Mechanics, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands.
Ottevanger, W., Blanckaert, K., Uijttewaal, W. S. J. & de Vriend, H. J. 2013 Meander dynamics: a reduced-order nonlinear model without curvature restrictions for flow and bed morphology. J. Geophys. Res. 118 (2), 11181131.
Paola, C. 2000 Quantitative models of sedimentary basin filling. Sedimentology 47 (s1), 121178.
Paola, C., Heller, P. L. & Angevine, C. L. 1992 The large-scale dynamics of grain-size variation in alluvial basins, 1: theory. Basin Res. 4 (2), 7390.
Paola, C. & Leeder, M. 2011 Environmental dynamics: simplicity versus complexity. Nature 469, 3839.
Parker, G. 1976 On the cause and characteristic scales of meandering and braiding in rivers. J. Fluid Mech. 76 (3), 457480.
Parker, G. 1978 Self-formed straight rivers with equilibrium banks and mobile bed. Part 1. The sand-silt river. J. Fluid Mech. 89, 109125.
Parker, G. 1991 Selective sorting and abrasion of river gravel. I: theory. J. Hydraul. Eng. 117 (2), 131147.
Parker, G. & Andrews, E. D. 1985 Sorting of bed load sediment by flow in meander bends. Water Resour. Res. 21 (9), 13611373.
Parker, G., Paola, C. & Leclair, S. 2000 Probabilistic Exner sediment continuity equation for mixtures with no active layer. J. Hydraul. Eng. 126 (11), 818826.
Parker, G., Seminara, G. & Solari, L. 2003 Bed load at low Shields stress on arbitrarily sloping beds: alternative entrainment formulation. Water Resour. Res. 39 (7), 1183.
Parker, G. & Sutherland, A. J. 1990 Fluvial armor. J. Hydraul. Res. 28 (5), 529544.
Phillips, B. C. & Sutherland, A. J. 1989 Spatial lag effects in bed load sediment transport. J. Hydraul. Res. 27 (1), 115133.
van Prooijen, B. C. & Uijttewaal, W. S. J. 2002 A linear approach for the evolution of coherent structures in shallow mixing layers. Phys. Fluids 14 (12), 41054114.
Qian, H., Cao, Z., Liu, H. & Pender, G. 2016 Numerical modelling of alternate bar formation, development and sediment sorting in straight channels. Earth Surf. Process. Landf. 42 (7), 555574.
Ribberink, J. S.1987 Mathematical modelling of one-dimensional morphological changes in rivers with non-uniform sediment. PhD thesis, Delft University of Technology, Delft, The Netherlands.
Rodrigues, L. & Zumbrun, K. 2016 Periodic-coefficient damping estimates, and stability of large-amplitude roll waves in inclined thin film flow. SIAM J. Math. Anal. 48 (1), 268280.
Rozovskii, I. L. 1957 Flow of Water in Bends in Open Channels, p. 233. Academy of Sciences of the Ukrainian SSR; (in English translated by Y. Prushansky in 1961).
Saint-Venant, A. J. C. B. 1871 Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Seances Acad. Sci. 73, 237240 (in French).
Schielen, R., Doelman, A. & de Swart, H. E. 1993 On the nonlinear dynamics of free bars in straight channels. J. Fluid Mech. 252, 325356.
Seminara, G. 2006 Meanders. J. Fluid Mech. 554, 271297.
Seminara, G., Solari, L. & Parker, G. 2002 Bed load at low Shields stress on arbitrarily sloping beds: failure of the Bagnold hypothesis. Water Resour. Res. 38 (11), 1249.
Seminara, G. & Tubino, M. 1989 Alternate bars and meandering. In River Meandering (ed. Ikeda, S. & Parker, G.), chap. 10, pp. 267320. AGU.
Shields, A.1936 Anwendung der Ähnlichkeitsmechanik und Turbulenzforschung auf die Geschiebebewegung. PhD thesis, Versuchsanstalt für Wasserbau und Schiffbau, 26, Berlin, Germany (in German).
Shimizu, Y., Giri, S., Yamaguchi, S. & Nelson, J. 2009 Numerical simulation of dune-flat bed transition and stage-discharge relationship with hysteresis effect. Water Resour. Res. 45 (4), W04429.
Sieben, J.1997 Modelling of hydraulics and morphology in mountain rivers. PhD thesis, Delft University of Technology, Delft, The Netherlands.
Simons, D. B. & Albertson, M. L. 1963 Uniform water conveyance channels in alluvial materials. Trans. ASCE 128, 65105.
Siviglia, A., Stecca, G. & Blom, A. 2017 Modeling of mixed-sediment morphodynamics in gravel bed rivers using the active layer approach: insights from mathematical and numerical analysis. In Gravel-Bed Rivers: Process and Disasters (ed. Tsutsumi, D. & Laronne, J.), chap. 26, pp. 703728. Wiley-Blackwell.
Stecca, G., Siviglia, A. & Blom, A. 2014 Mathematical analysis of the Saint-Venant-Hirano model for mixed-sediment morphodynamics. Water Resour. Res. 50 (10), 75637589.
Stecca, G., Siviglia, A. & Blom, A. 2016 An accurate numerical solution to the Saint-Venant-Hirano model for mixed-sediment morphodynamics in rivers. Adv. Water Resour. 93 (Part A), 3961.
Strikwerda, J. 2004 Finite Difference Schemes and Partial Differential Equations, 2 edn. Society for Industrial and Applied Mathematics.
Talmon, A., Struiksma, N. & Mierlo, M. V. 1995 Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. J. Hydraul. Res. 33 (4), 495517.
Talstra, H.2011 Large-scale turbulence structures in shallow separating flows. PhD thesis, Delft University of Technology, Delft, The Netherlands.
Toro, E. F. 2009 Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer.
Toro-Escobar, C. M., Paola, C. & Parker, G. 1996 Transfer function for the deposition of poorly sorted gravel in response to streambed aggradation. J. Hydraul. Res. 34 (1), 3553.
Veprek, R. G., Steiger, S. & Witzigmann, B. 2007 Ellipticity and the spurious solution problem of k-p envelope equations. Phys. Rev. B 76, 165320.
Vreugdenhil, C. B. 1994 Numerical Methods for Shallow-Water Flow. Springer.
de Vriend, H. J. 1977 A mathematical model of steady flow in curved shallow channels. J. Hydraul. Res. 15 (1), 3754.
de Vriend, H. J.1981 Steady flow in shallow channel bends. PhD thesis, Delft University of Technology, Delft, The Netherlands.
de Vries, M.1965 Considerations about non-steady bed load transport in open channels. Tech. Rep. 36, Delft Hydraulics Laboratory, Delft, The Netherlands.
de Vries, M.1973 River-bed variations – aggradation and degradation. Tech. Rep. 107, Delft Hydraulics Laboratory, Delft, The Netherlands.
Williams, R. D., Measures, R., Hicks, D. M. & Brasington, J. 2016 Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river. Water Resour. Res. 52 (8), 66216642.
Woodhouse, M. J., Thornton, A. R., Johnson, C. G., Kokelaar, B. P. & Gray, J. M. N. T. 2012 Segregation-induced fingering instabilities in granular free-surface flows. J. Fluid Mech. 709, 543580.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Ill posedness in modelling two-dimensional morphodynamic problems: effects of bed slope and secondary flow

  • Víctor Chavarrías (a1), Ralph Schielen (a2) (a3), Willem Ottevanger (a4) and Astrid Blom (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed