Skip to main content
×
×
Home

The influence of wall roughness on bubble drag reduction in Taylor–Couette turbulence

  • Ruben A. Verschoof (a1), Dennis Bakhuis (a1), Pim A. Bullee (a1), Sander G. Huisman (a1), Chao Sun (a1) (a2) and Detlef Lohse (a1) (a3)...
Abstract

We experimentally study the influence of wall roughness on bubble drag reduction in turbulent Taylor–Couette flow, i.e. the flow between two concentric, independently rotating cylinders. We measure the drag in the system for the cases with and without air, and add roughness by installing transverse ribs on either one or both of the cylinders. For the smooth-wall case (no ribs) and the case of ribs on the inner cylinder only, we observe strong drag reduction up to DR $=33\,\%$ and DR $=23\,\%$ , respectively, for a void fraction of $\unicode[STIX]{x1D6FC}=6\,\%$ . However, with ribs mounted on both cylinders or on the outer cylinder only, the drag reduction is weak, less than DR $=11\,\%$ , and thus quite close to the trivial effect of reduced effective density. Flow visualizations show that stable turbulent Taylor vortices – large-scale vortical structures – are induced in these two cases, i.e. the cases with ribs on the outer cylinder. These strong secondary flows move the bubbles away from the boundary layer, making the bubbles less effective than what had previously been observed for the smooth-wall case. Measurements with counter-rotating smooth cylinders, a regime in which pronounced Taylor rolls are also induced, confirm that it is really the Taylor vortices that weaken the bubble drag reduction mechanism. Our findings show that, although bubble drag reduction can indeed be effective for smooth walls, its effect can be spoiled by e.g. biofouling and omnipresent wall roughness, as the roughness can induce strong secondary flows.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The influence of wall roughness on bubble drag reduction in Taylor–Couette turbulence
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The influence of wall roughness on bubble drag reduction in Taylor–Couette turbulence
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The influence of wall roughness on bubble drag reduction in Taylor–Couette turbulence
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email addresses for correspondence: chaosun@tsinghua.edu.cn, d.lohse@utwente.nl
References
Hide All
van den Berg, T. H., Doering, Ch. R., Lohse, D. & Lathrop, D. P. 2003 Smooth and rough boundaries in turbulent Taylor–Couette flow. Phys. Rev. E 68, 036307.
Van den Berg, T. H., van Gils, D. P. M., Lathrop, D. P. & Lohse, D. 2007 Bubbly turbulent drag reduction is a boundary layer effect. Phys. Rev. Lett. 98, 084501.
van den Berg, T. H., Luther, S., Lathrop, D. P. & Lohse, D. 2005 Drag reduction in bubbly Taylor–Couette turbulence. Phys. Rev. Lett. 94, 044501.
Cadot, O., Couder, Y., Daerr, A., Douady, S. & Tsinober, A. 1997 Energy injection in closed turbulent flows: stirring through boundary layers versus inertial stirring. Phys. Rev. E 56, 427433.
Ceccio, S. L. 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42, 183203.
Chouippe, A., Climent, E., Legendre, D. & Gabillet, C. 2014 Numerical simulation of bubble dispersion in turbulent Taylor–Couette flow. Phys. Fluids 26 (4), 043304.
Deutsch, S., Moeny, M., Fontaine, A. A. & Petrie, H. 2004 Microbubble drag reduction in rough walled turbulent boundary layers with comparison against polymer drag reduction. Exp. Fluids 37, 731744.
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.
Elbing, B. R., Mäkiharju, S., Wiggins, A., Perlin, M., Dowling, D. R. & Ceccio, S. L. 2013 On the scaling of air layer drag reduction. J. Fluid Mech. 717, 484513.
Elbing, B. R., Winkel, E. S., Lay, K. A., Ceccio, S. L., Dowling, D. R. & Perlin, M. 2008 Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J. Fluid Mech. 612, 201236.
Fardin, M. A., Perge, C. & Taberlet, N. 2014 ‘The hydrogen atom of fluid dynamics’: introduction to the Taylor–Couette flow for soft matter scientists. Soft Matt. 10, 3523.
Flack, K. A. & Schultz, M. P. 2014 Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26 (10), 101305.
Foeth, E. J. 2008 Decreasing frictional resistance by air lubrication. In 20th Int. HISWA Symp. on Yacht Design and Yacht Construction. HISWA.
van Gils, D. P. M., Bruggert, G. W., Lathrop, D. P., Sun, C. & Lohse, D. 2011a The Twente turbulent Taylor–Couette (T3C) facility: strongly turbulent (multi-phase) flow between independently rotating cylinders. Rev. Sci. Instrum. 82, 025105.
van Gils, D. P. M., Huisman, S. G., Bruggert, G. W., Sun, C. & Lohse, D. 2011b Torque scaling in turbulent Taylor–Couette flow with co- and counter-rotating cylinders. Phys. Rev. Lett. 106, 024502.
van Gils, D. P. M., Huisman, S. G., Grossmann, S., Sun, C. & Lohse, D. 2012 Optimal Taylor–Couette turbulence. J. Fluid Mech. 706, 118149.
van Gils, D. P. M., Narezo Guzman, D., Sun, C. & Lohse, D. 2013 The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J. Fluid Mech. 722, 317347.
Grossmann, S., Lohse, D. & Sun, C. 2016 High Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 53.
Huisman, S. G., van der Veen, R. C. A., Sun, C. & Lohse, D. 2014 Multiple states in highly turbulent Taylor–Couette flow. Nat. Commun. 5, 3820.
Kodama, Y., Kakugawa, A., Takahashi, T. & Kawashima, H. 2000 Experimental studies on microbubbles and their applicability to ships for skin friction reduction. Intl J. Heat Fluid Flow 21, 582588.
Kraichnan, R. H. 1962 Turbulent thermal convection at arbritrary Prandtl number. Phys. Fluids 5, 1374.
Lathrop, D. P., Fineberg, J. & Swinney, H. S. 1992a Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46, 63906405.
Lathrop, D. P., Fineberg, J. & Swinney, H. S. 1992b Turbulent flow between concentric rotating cylinders at large Reynolds numbers. Phys. Rev. Lett. 68, 15151518.
Lewis, G. S. & Swinney, H. L. 1999 Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E 59, 54575467.
Mäkiharju, S., Perlin, M. & Ceccio, S. L. 2012 On the energy economics of air lubrication drag reduction. Intl. J. Nav. Archit. Ocean Engng. 4, 412422.
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.
Murai, Y. 2014 Frictional drag reduction by bubble injection. Exp. Fluids 55 (7), 1773.
Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D. 2014 Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.
Rosenberg, B. J., van Buren, T., Matthew, K. F. & Smits, A. J. 2016 Turbulent drag reduction over air- and liquid-impregnated surfaces. Phys. Fluids 28, 015103.
Saranadhi, D., Chen, D., Kleingartner, J. A., Srinivasan, S., Cohen, R. B. & McKinley, G. H. 2016 Sustained drag reduction in a turbulent flow using a low temperature Leidenfrost surface. Sci. Adv. 2 (10), E1600686.
Schultz, M. P. 2007 Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23 (5), 331341.
Schultz, M. P., Bendick, J. A., Holm, E. R. & Hertel, W. M. 2011 Economic impact of biofouling on a naval surface ship. Biofouling 27 (1), 8798.
Shen, X., Perlin, M. & Ceccio, S. L. 2006 Influence of bubble size on micro-bubble drag reduction. Exp. Fluids 41, 415424.
Spandan, V., Verzicco, R. & Lohse, D. 2017 Deformable ellipsoidal bubbles in Taylor–Couette flow with enhanced Euler–Lagrangian tracking. Phys. Rev. Fluids 2, 104304.
Srinivasan, S., Kleingartner, J. A., Gilbert, J. B., Cohen, R. B., Milne, A. J. B. & McKinley, G. H. 2015 Sustainable drag reduction in turbulent Taylor–Couette flows by depositing sprayable superhydrophobic surfaces. Phys. Rev. Lett. 114, 014501.
Sugiyama, K., Calzavarini, E. & Lohse, D. 2008 Microbubble drag reduction in Taylor–Couette flow in the wavy vortex regime. J. Fluid Mech. 608, 2141.
Takagi, S. & Matsumoto, Y. 2011 Surfactant effects on bubble motion and bubbly flows. Annu. Rev. Fluid Mech. 43 (1), 615636.
Takagi, S., Ogasawara, T. & Matsumoto, Y. 2008 The effects of surfactant on the multiscale structure of bubbly flows. Phil. Trans. A. Math. Phys. Engng Sci. 366 (1873), 21172129.
Takahashi, T., Kakugawa, A., Nagaya, S., Yanagihara, T. & Kodama, Y. 2001 Mechanisms and scale effects of skin friction reduction by microbubbles. In Proceedings of 2nd Symposium on Smart Control of Turbulence, University of Tokyo.
Toppaladoddi, S., Succi, S. & Wettlaufer, J. S. 2017 Roughness as a route to the ultimate regime of thermal convection. Phys. Rev. Lett. 118, 074503.
van der Veen, R. C. A., Huisman, S. G., Dung, O.-Y., Tang, H.-L., Sun, C. & Lohse, D. 2016 Exploring the phase space of multiple states in highly turbulent Taylor–Couette flow. Phys. Rev. Fluids 1, 024401.
Verschoof, R. A., Bakhuis, D., Bullee, P. A., Huisman, S. G., Sun, C. & Lohse, D. 2018 Air cavities at the inner cylinder of turbulent Taylor–Couette flow. Intl J. Multiphase Flow 105, 264273.
Verschoof, R. A., van der Veen, R. C. A., Sun, C. & Lohse, D. 2016 Bubble drag reduction requires large bubbles. Phys. Rev. Lett. 117, 104502.
Winkel, E. S., Ceccio, S. L., Dowling, D. R. & Perlin, M. 2004 Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions. Exp. Fluids 37, 802810.
Zhu, X., Ostilla-Monico, R., Verzicco, R. & Lohse, D. 2016 Direct numerical simulation of Taylor–Couette flow with grooved walls: torque scaling and flow structure. J. Fluid Mech. 794, 746774.
Zhu, X., Verschoof, R. A., Bakhuis, D., Huisman, S. G., Verzicco, R., Sun, C. & Lohse, D. 2018 Wall roughness induces asymptotic ultimate turbulence. Nat. Phys. 14, 417423.
Zverkhovskyi, O.2014 Ship drag reduction by air cavities. PhD thesis, Delft University of Technology, Delft, NL.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed