Abide, S. & Viazzo, S.
2005
A 2D compact fourth-order projection decomposition method. J. Comput. Phys.
206, 252–276.

Abrahamson, S. D., Eaton, J. K. & Koga, D. J.
1989
The flow between shrouded corotating disks. Phys. Fluids A
1 (2), 241–251.

Barcilon, V. & Pedlosky, J.
1967
Linear theory of rotating stratified fluid motions. J. Fluid Mech.
29, 1–17.

Billant, P. & Gallaire, F.
2005
Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities. J. Fluid Mech.
542, 365–379.

von Böckh, P. & Wetzel, T.
2014
Wärmeübertragung. Springer Vieweg.

Borchert, S., Achatz, U. & Fruman, M. D.
2014
Gravity wave emission in an atmosphere-like configuration of the differentially heated rotating annulus experiment. J. Fluid Mech.
758, 287–311.

Castrejón-Pita, A. A. & Read, P. L.
2007
Baroclinic waves in an air-filled thermally driven rotating annulus. Phys. Rev. E
75, 026301.

Chomaz, J. M., Ortiz, S., Gallaire, F. & Billant, P.
2010
Stability of quasi two-dimensional vortices. In Lecture Notes in Physics: Fronts, Waves and Vortices in Geophysical Flows (ed. Flór, J.-B.), Lecture Notes in Physics, vol. 805, pp. 35–59. Springer.

Dettinger, M. D., Ghil, M., Strong, C. M., Weibel, W. & Yiou, P.
1995
Software expedites singular-spectrum analysis of noisy time series. EOS Trans. AGU
76 (2), 12, 14, 21.

Fein, J. S. & Pfeffer, R. L.
1976
An experimental study of the effects of Prandtl number on thermal convection in a rotating, differentially heated cylindrical annulus of fluid. J. Fluid Mech.
75, 81–112.

Flór, J.-B., Scolan, H. & Gula, J.
2011
Frontal instabilities and waves in a differentially rotating fluid. J. Fluid Mech.
685, 532–542.

Fritts, D. C. & Alexander, M. J.
2003
Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys.
41, 1003.

Früh, W.-G.
2015
Amplitude vacillation in baroclinic flows. In Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (ed. von Larcher, Th. & Williams, P. D.), pp. 61–84. John Wiley & Sons.

Früh, W.-G. & Read, P. L.
1997
Wave interactions and the transition to chaos of baroclinic waves in a thermally driven rotating annulus. Phil. Trans. R. Soc. Lond. A
355, 101–153.

Fultz, D., Long, R. R., Owens, G. V., Bohan, W., Kaylor, R. & Weil, J.
1959
Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions. Meteorological Monographs. vol. 4, pp. 1–104. American Meteorological Society.

Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F.
et al.
2002
Advanced spectral methods for climatic time series. Rev. Geophys.
40 (1), 3.1–3.41.

Gill, A.
1982
Atmosphere–Ocean Dynamics. Academic Press.

Goldstein, D., Handler, R. & Sirovich, L.
1993
Modeling a no-slip flow boundary with an external force field. J. Comput. Phys.
105 (2), 354–366.

Harlander, U., Larcher, Th., Wang, Y. & Egbers, C.
2011
PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus. Exp. Fluids
51 (1), 37–49.

Harlander, U., von Larcher, Th., Wright, G. B., Hoff, M., Alexandrov, K. & Egbers, C.
2015
Orthogonal decomposition methods to analyze PIV, LDV and thermography data of a thermally driven rotating annulus laboratory experiment. In Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (ed. von Larcher, Th. & Williams, P. D.), pp. 315–336. John Wiley & Sons.

Hart, J. E. & Kittelman, S.
1996
Instabilities of the sidewall boundary layer in a differentially driven rotating cylinder. Phys. Fluids
8, 692–696.

Hide, R.
1958
An experimental study of thermal convection in a rotating fluid. Phil. Trans. R. Soc. Lond. A
250, 441–478.

Hide, R. & Mason, P. J.
1975
Sloping convection in a rotating fluid. Adv. Phys.
24, 47–99.

Hien, S., Rolland, J., Borchert, S., Schoon, L., Zülicke, C. & Achatz, U.
2018
Spontaneous inertia–gravity wave emission in the differentially heated rotating annulus experiment. J. Fluid Mech.
838, 5–41.

Hignett, P.
1985
Characteristics of amplitude vacillation in a differentially heated rotating fluid annulus. Geophys. Astrophys. Fluid Dyn.
31, 247–281.

Hunt, J. C. R.
1987
Vorticity and vortex dynamics in complex turbulent flows. Trans. Can. Soc. Mech. Engng
11, 21–35.

Hunt, J. C. R., Wray, A. A. & Moin, P.
1988
Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, Proceedings of the 1988 Summer Program, pp. 193–208. Center for Turbulence Research, Stanford University.

Jacoby, T. N. L., Read, P. L., Williams, P. D. & Young, R. M. B.
2011
Generation of inertia–gravity waves in the rotating, thermal annulus by a localised boundary layer instability. Geophys. Astrophys. Fluid Dyn.
105, 161–181.

James, I. N., Jonas, P. R. & Farnell, L.
1980
A combined laboratory and numerical study of fully developed steady baroclinic waves in a cylindrical annulus. Q. J. R. Meteorol. Soc.
107, 51–78.

von Larcher, Th. & Dörnbrack, A.
2015
Numerical simulations of baroclinic driven flows in a thermally driven rotating annulus using the immersed boundary method. Meteorol. Z.
23, 599–610.

von Larcher, Th. & Egbers, C.
2005
Experiments on transitions of baroclinic waves in a differentially heated rotating annulus. Nonlinear Process. Geophys.
12, 1033–1041.

Leppiler, V., Goharzadeh, A., Prigent, A. & Mutabazi, I.
2008
Weak temperature gradient effect on the stability of the circular Couette flow. Eur. Phys. J. B
61, 445–455.

Lopez, J. M. & Marques, F.
2010
Sidewall boundary layer instabilities in a rapidly rotating cylinder driven by a differentially corotating lid. Phys. Fluids
22, 114109.

Lovegrove, A. F., Read, P. L. & Richards, C. J.
2000
Generation of inertia–gravity waves in a baroclinically unstable fluid. Q. J. R. Meteorol. Soc.
126, 3233–3254.

Lu, H.-I. & Miller, T. L.
1997
Characteristics of annulus baroclinic flow structure during amplitude vacillation. Dyn. Atmos. Oceans
27, 485–503.

McBain, G. D., Armfield, S. W. & Desrayaud, G.
2007
Instability of the buoyancy layer on an evenly heated vertical wall. J. Fluid Mech.
587, 453–469.

Morita, O. & Uryu, M.
1989
Geostrophic turbulence in a rotating annulus of fluid. J. Atmos. Sci.
46, 2349–2355.

Oguic, R., Viazzo, S. & Poncet, S.
2015
A parallelized multidomain compact solver for incompressible turbulent flows in cylindrical geometries. J. Comput. Phys.
300, 710–731.

Ohlsen, D. R. & Hart, J. E.
1989
Nonlinear interference vacillation. Geophys. Astrophys. Fluid Dyn.
45 (3–4), 213–235.

O’Sullivan, D. & Dunkerton, T. J.
1995
Generation of inertia–gravity waves in a simulated life-cycle of baroclinic instability. J. Atmos. Sci.
52, 3695–3716.

Pedlosky, J.
1970
Finite-amplitude baroclinic waves. J. Atmos. Sci.
27, 15–30.

Pfeffer, R. L., Applequist, S. R., Kung, R., Long, C. & Buzyna, G.
1997
Progress in characterizing the route to geostrophic turbulence and redesigning thermally driven rotating annulus. Theor. Comput. Fluid Dyn.
9, 253–267.

Plougonven, R. & Snyder, C.
2005
Gravity waves excited by jets: propagation versus generation. Geophys. Res. Lett.
32, L18802.

Plougonven, R. & Snyder, C.
2007
Inertia–gravity waves spontaneously excited by jets and fronts. Part I: different baroclinic life cycles. J. Atmos. Sci.
64, 2502–2520.

Plougonven, R., Teitelbaum, H. & Zeitlin, V.
2003
Inertia gravity wave generation by the tropospheric midlatitude jet as given by the fronts and Atlantic storm-track experiment radio sounding. J. Geophys. Res.
108, 4686.

Prusa, J. M., Smolarkiewicz, P. K. & Wyszogrodzki, A. A.
2008
EULAG, a computational model for multiscale flows. Comput. Fluids
37, 1193–1207.

Randriamampianina, A.
2013
Inertia gravity wave characteristics within a baroclinic cavity. C. R. Méc.
341, 547–552.

Randriamampianina, A. & Crespo del Arco, E.
2015
Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus. J. Fluid Mech.
782, 144–177.

Randriamampianina, A., Früh, W.-G., Read, P. L. & Maubert, P.
2006
Direct numerical simulations of bifurcations in an air-filled rotating baroclinic annulus. J. Fluid Mech.
561, 359–389.

Read, P. L.
1992
Applications of singular systems analysis to ‘baroclinic chaos’. Physica D
58, 455–468.

Read, P. L., Bell, M. J., Johnson, D. W. & Small, R. M.
1992
Quasi-periodic and chaotic flow regimes in a thermally-driven, rotating fluid annulus. J. Fluid Mech.
238, 599–632.

Read, P. L., Maubert, P., Randriamampianina, A. & Früh, W.-G.
2008
Direct numerical simulation of transitions towards structural vacillation in an air-filled, rotating, baroclinic annulus. Phys. Fluids
20, 044107.

Read, P. L., Perez, E. P., Moroz, I. M. & Young, R. M. B.
2015
General circulation of planetary atmospheres: insights from rotating annulus and related experiments. In Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (ed. von Larcher, Th. & Williams, P. D.), pp. 9–44. John Wiley & Sons.

Smolarkiewicz, P. K.
1991
On forward-in-time differencing for fluids. Mon. Weath. Rev.
119, 2505–2510.

Smolarkiewicz, P. K. & Margolin, L. G.
1997
On forward-in-time differencing for fluids: an Eulerian/semi-Lagrangian non-hydrostatic model for stratified flows. Atmos-Ocean Special
35, 127–157.

Smolarkiewicz, P. K. & Margolin, L. G.
1998
MPDATA: a positive definite solver for geophysical flows. J. Comput. Phys.
140, 459–480.

Smolarkiewicz, P. K., Sharman, R., Weil, J., Perry, S. G., Heist, D. & Bowker, G.
2007
Building resolving large-eddy simulations and comparison with wind tunnel experiments. J. Comput. Phys.
227 (1), 633–653.

Synge, J. L.
1933
The stability of heterogeneous liquid. Trans. R. Soc. Can.
27, 1–18.

Tollmien, W.
1935
Ein allgemeines Kriterium der Instabilität laminarer Geschwindigkeitsverteilungen. Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse NF
1, 79–114.

Vanneste, J.
2013
Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid. Mech.
45, 147–172.

Vautard, R., Yiou, P. & Ghil, M.
1992
Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D
58, 95–126.

Viazzo, S. & Poncet, S.
2014
Numerical simulation of the flow stability in a high aspect ratio Taylor–Couette system submitted to a radial temperature gradient. Comput. Fluids
101, 15–26.

Vincze, M., Borchert, S., Achatz, U., von Larcher, Th., Baumann, M., Hertel, C., Remmler, S., Alexandrov, K., Egbers, C., Fröhlich, J.
et al.
2015
Benchmarking in a rotating annulus: a comparative experimental and numerical study of baroclinic wave dynamics. Meteorol. Z.
23, 611–635.

Vincze, M., Borcia, I., Harlander, U. & Le Gal, P.
2016
Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability. Fluid Dyn. Res.
48, 061414.

Viùdez, A. & Dritschel, D. G.
2006
Spontaneous generation of inertia–gravity wave packets by balanced geophysical flows. J. Fluid Mech.
553, 107–117.

Williams, P. D., Haine, T. W. N. & Read, P. L.
2008
Inertia–gravity waves emitted from balanced flow: observations, properties, and consequences. J. Atmos. Sci.
65, 3543–3556.

Zhang, F.
2004
Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci.
61, 440–457.