Skip to main content Accessibility help

Linear stability analysis of a shear layer induced by differential coaxial rotation within a cylindrical enclosure

  • Tony Vo (a1), Luca Montabone (a2) and Gregory J. Sheard (a1)


The generation of distinct polygonal configurations via the instability of a Stewartson shear layer is numerically investigated. The shear layer is induced using a rotating cylindrical tank with differentially forced disks located at the top and bottom boundaries. The incompressible Navier–Stokes equations are solved on a two-dimensional semi-meridional plane. Axisymmetric base flows are consistently found to reach a steady state for a wide range of flow conditions, and details of the vertical structure are revealed. An axially invariant two-dimensional flow is ascertained for small $\vert \mathit{Ro}\vert $ , which substantiates the Taylor–Proudman theorem. Sufficient increases in $\vert \mathit{Ro}\vert $ forcing develops flow features that break this quasi-two-dimensionality. The onset of this breaking occurs earlier with increasing $\vert \mathit{Ro}\vert $ for $\mathit{Ro}\gt 0$ compared with $\mathit{Ro}\lt 0$ . The thickness scaling of the vertical Stewartson layers are in agreement with previous analytical results. Growth rates of the most unstable azimuthal wavenumber from a global linear stability analysis are obtained. The threshold between axisymmetric and non-axisymmetric flow follows a power law, and both positive- and negative- $\mathit{Ro}$ regimes are found to adopt the same threshold for instability, namely $\vert \mathit{Ro}\vert \geq 18. 1{E}^{0. 767} $ . This relationship corresponds to a constant critical internal Reynolds number of ${\mathit{Re}}_{i, c} \simeq 22. 5$ . A review of reported critical internal Reynolds number and their characteristic length scales yields a consistent instability onset given by $\vert \mathit{Ro}\vert / {E}^{3/ 4} = 15. 4{\unicode{x2013}} 16. 6$ ; here we find $\vert \mathit{Ro}\vert / {E}^{3/ 4} = 15. 8$ . At the onset of linear instability, the initially circular shear layer deforms, resulting in a polygonal structure consistent with barotropic instability. Dominant azimuthal wavenumbers range from $3$ to $7$ at the onset of instability for the parameter space explored. Empirical relationships for the preferential wavenumber have been obtained. Additional instability modes have been discovered that favour higher wavenumbers, and these exhibit structures localized to the disk–tank interfaces.


Corresponding author

Email address for correspondence:


Hide All

Present address: Space Science Institute, Boulder, CO 80301, USA.



Hide All
Aguiar, A. C. B. 2008 Instabilities of a shear layer in a barotropic rotating fluid. PhD thesis, University of Oxford, UK.
Aguiar, A. C. B. & Read, P. 2006 Instabilities of a barotropic shear layer in a rotating fluid: asymmetries with respect to $\mathrm{sgn} (Ro)$ . Meteorol. Z. 15 (4), 417422.
Aguiar, A. C. B., Read, P. L., Wordsworth, R. D., Salter, T. & Yamazaki, Y. H. 2010 A laboratory model of Saturn’s north polar hexagon. Icarus 206 (2), 755763.
Avila, M. 2012 Stability and angular-momentum transport of fluid flows between corotating cylinders. Phys. Rev. Lett. 108 (12), 124501.
Baker, D. J. 1967 Shear layers in a rotating fluid. J. Fluid Mech. 29 (1), 165175.
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.
Bergeron, K., Coutsias, E. A., Lynov, J. P. & Nielsen, A. H. 2000 Dynamical properties of forced shear layers in an annular geometry. J. Fluid Mech. 402 (1), 255289.
Blackburn, H. M., Marques, F. & Lopez, J. M. 2005 Symmetry breaking of two-dimensional time-periodic wakes. J. Fluid Mech. 522, 395411.
Blackburn, H. M. & Sheard, G. J. 2010 On quasiperiodic and subharmonic Floquet wake instabilities. Phys. Fluids 22, 031701.
Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197 (2), 759778.
Busse, F. H. 1968 Shear flow instabilities in rotating systems. J. Fluid Mech. 33 (3), 577589.
Chomaz, J. M., Rabaud, M., Basdevant, C. & Couder, Y. 1988 Experimental and numerical investigation of a forced circular shear layer. J. Fluid Mech. 187, 115140.
Cogan, S. J., Ryan, K. & Sheard, G. J. 2011 Symmetry breaking and instability mechanisms in medium depth torsionally driven open cylinder flows. J. Fluid Mech. 672, 521544.
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P., Vasavada, A. R., West, R. A., Baines, K. H., Momary, T. W., Del Genio, A. D., Barbara, J. M., Porco, C. C., Achterberg, R. K., Flasar, F. M., Simon-Miller, A. A. & Fletcher, L. N. 2009 Saturn’s south polar vortex compared to other large vortices in the solar system. Icarus 202 (1), 240248.
Fletcher, L. N., Irwin, P. G. J., Orton, G. S., Teanby, N. A., Achterberg, R. K., Bjoraker, G. L., Read, P. L., Simon-Miller, A. A., Howett, C., de Kok, R., Bowles, N., Calcutt, S. B., Hesman, B. & Flasar, F. M. 2008 Temperature and composition of Saturn’s polar hot spots and hexagon. Science 319 (5859), 7981.
Früh, W. G. & Nielsen, A. H. 2003 On the origin of time-dependent behaviour in a barotropically unstable shear layer. Nonlinear Process. Geophys. 10 (3), 289302.
Früh, W. G. & Read, P. L. 1999 Experiments on a barotropic rotating shear layer. Part 1. Instability and steady vortices. J. Fluid Mech. 383, 143173.
Gilman, P. A. & Fox, P. A. 1997 Joint instability of latitudinal differential rotation and toroidal magnetic fields below the solar convection zone. Astrophys. J. 484 (1), 439454.
Godfrey, D. A. 1988 A hexagonal feature around Saturn’s north pole. Icarus 76, 335356.
Hide, R. & Titman, C. W. 1967 Detached shear layers in a rotating fluid. J. Fluid Mech. 29 (1), 3960.
Hollerbach, R. 2003 Instabilities of the Stewartson layer. Part 1. The dependence on the sign of $Ro$ . J. Fluid Mech. 492, 289302.
Hollerbach, R. & Fournier, A. 2004 End-effects in rapidly rotating cylindrical Taylor–Couette flow. In MHD Couette Flows: Experiments and Models (ed. Rosner, R., Rüdiger, G. & Bonanno, A.), AIP Conference Proceedings, vol. 733, pp. 114121.
Jansson, T. R. N., Haspang, M. P., Jensen, K. H., Hersen, P. & Bohr, T. 2006 Polygons on a rotating fluid surface. Phys. Rev. Lett. 96, 174502.
Ji, H., Burin, M., Schartman, E. & Goodman, J. 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444 (7117), 343346.
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414443.
van de Konijnenberg, J. A., Nielsen, A. H., Juul Rasmussen, J. & Stenum, B. 1999 Shear-flow instability in a rotating fluid. J. Fluid Mech. 387, 177204.
Kossin, J. P. & Schubert, W. H. 2001 Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci. 58, 21962209.
Kossin, J. P. & Schubert, W. H. 2004 Mesovortices in hurricane Isabel. Bull. Am. Meteorol. Soc. 85 (2), 151153.
Kuo, H. 1949 Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Atmos. Sci. 6, 105122.
Limaye, S. S., Kossin, J. P., Rozoff, C., Piccioni, G., Titov, D. V. & Markiewicz, W. J. 2009 Vortex circulation on Venus: dynamical similarities with terrestrial hurricanes. Geophys. Res. Lett. 36, L04204.
Luz, D., Berry, D. L., Piccioni, G., Drossart, P., Politi, R., Wilson, C. F., Erard, S. & Nuccilli, F. 2011 Venus’s southern polar vortex reveals precessing circulation. Science 332 (6029), 577580.
Montabone, L., Wordsworth, R., Aguiar, A., Jacoby, T., Read, P. L., McClimans, T. & Ellingsen, I. 2010a Barotropic instability of planetary polar vortices: concept, experimental set-up and parameter space analysis. In Proceedings of the HYDRALAB III Joint Transnational Access User Meeting, Hannover, February 2010, pp. 135138.
Montabone, L., Wordsworth, R., Aguiar, A. C. B., Jacoby, T., Manfrin, M., Read, P. L., Castrejon-Pita, A., Gostiaux, L., Sommeria, J., Viboud, S. & Didelle, H. 2010b Barotropic instability of planetary polar vortices: CIV analysis of specific multi-lobed structures. In Proceedings of the HYDRALAB III Joint Transnational Access User Meeting, Hannover, February 2010, pp. 191194.
Murray, B. C., Wildey, R. L. & Westphal, J. A. 1963 Infrared photometric mapping of Venus through the 8- to 14-micron atmospheric window. J. Geophys. Res. 68, 48134818.
Niino, H. & Misawa, N. 1984 An experimental and theoretical study of barotropic instability. J. Atmos. Sci. 41 (12), 19922011.
Paoletti, M. S., van Gils, D. P. M., Dubrulle, B., Sun, C., Lohse, D. & Lathrop, D. P. 2012 Angular momentum transport and turbulence in laboratory models of Keplerian flows. Astron. Astrophys. 547, A64.
Paoletti, M. S. & Lathrop, D. P. 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.
Peralta, C., Melatos, A., Giacobello, M. & Ooi, A. 2009 Superfluid spherical Couette flow. J. Phys.: Conf. Ser. 150, 032081.
Piccioni, G., Drossart, P., Sanchez-Lavega, A., Hueso, R., Taylor, F. W., Wilson, C. F., Grassi, D., Zasova, L., Moriconi, M. & Adriani, A. et al. 2007 South-polar features on Venus similar to those near the north pole. Nature 450 (7170), 637640.
Rayleigh, Lord 1880 On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. 11, 5772.
Schaeffer, N. & Cardin, P. 2005 Quasigeostrophic model of the instabilities of the Stewartson layer in flat and depth-varying containers. Phys. Fluids 17, 104111.
Schartman, E., Ji, H., Burin, M. J. & Goodman, J. 2012 Stability of quasi-Keplerian shear flow in a laboratory experiment. Astron. Astrophys. 543, A94.
Schlichting, H. 1979 Boundary-Layer Theory. McGraw-Hill.
Sheard, G. J. 2009 Flow dynamics and wall shear-stress variation in a fusiform aneurysm. J. Engng Maths 64 (4), 379390.
Sheard, G. J. 2011 Wake stability features behind a square cylinder: focus on small incidence angles. J. Fluids Struct. 27, 734742.
Sheard, G. J. & Ryan, K. 2007 Pressure-driven flow past spheres moving in a circular tube. J. Fluid Mech. 592, 233262.
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2005 Subharmonic mechanism of the mode C instability. Phys. Fluids 17, 111702.
Smith, S. H. 1984 The development of nonlinearities in the ${E}^{1/ 3} $ Stewartson layer. Q. J. Mech. Appl. Math. 37 (1), 7585.
Solomon, T. H., Holloway, W. J. & Swinney, H. L. 1993 Shear flow instabilities and Rossby waves in barotropic flow in a rotating annulus. Phys. Fluids A: Fluid Dyn. 5, 19711971.
Sommeria, J., Meyers, S. D. & Swinney, H. L. 1991 Experiments on vortices and Rossby waves in eastward and westward jets. Nonlinear Topics Ocean Phys. 109, 227269.
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.
Taylor, F. W., Diner, D. J., Elson, L. S., McCleese, D. J., Martonchik, J. V., Delderfield, J., Bradley, S. P., Schofield, J. T., Gille, J. C. & Coffey, M. T. 1979 Temperature, cloud structure, and dynamics of Venus middle atmosphere by infrared remote sensing from Pioneer Orbiter. Science 205 (4401), 6567.
Vatistas, G. H. 1990 A note on liquid vortex sloshing and Kelvin’s equilibria. J. Fluid Mech. 217 (1), 241248.
Vo, T., Sheard, G. J. & Montabone, L. 2011 Stability of a rotating tank source–sink setup to model a polar vortex. In Mechanical, Industrial, and Manufacturing Engineering (ed. Ma, M.), pp. 251254. Information Engineering Research Institute.
Vooren, A. I. 1992 The Stewartson layer of a rotating disk of finite radius. J. Engng Math. 26 (1), 131152.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Linear stability analysis of a shear layer induced by differential coaxial rotation within a cylindrical enclosure

  • Tony Vo (a1), Luca Montabone (a2) and Gregory J. Sheard (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.