Skip to main content
×
×
Home

Linear waves in two-layer fluids over periodic bottoms

  • Jie Yu (a1) and Leo R. M. Maas (a2) (a3)
Abstract

A new, exact Floquet theory is presented for linear waves in two-layer fluids over a periodic bottom of arbitrary shape and amplitude. A method of conformal transformation is adapted. The solutions are given, in essentially analytical form, for the dispersion relation between wave frequency and generalized wavenumber (Floquet exponent), and for the waveforms of free wave modes. These are the analogues of the classical Lamb’s solutions for two-layer fluids over a flat bottom. For internal modes the interfacial wave shows rapid modulation at the scale of its own wavelength that is comparable to the bottom wavelength, whereas for surface modes it becomes a long wave carrier for modulating short waves of the bottom wavelength. The approximation using a rigid lid is given. Sample calculations are shown, including the solutions that are inside the forbidden bands (i.e. Bragg resonated).

Copyright
Corresponding author
Email address for correspondence: Jie.Yu.1@stonybrook.edu
References
Hide All
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2009 Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part I. Perturbation analysis. J. Fluid Mech. 624, 191224.
Athanassoulis, G. A. & Belibassakis, K. A. 1999 A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions. J. Fluid Mech. 389, 275301.
Drijfhout, S. & Maas, L. R. M. 2007 Impact of channel geometry and rotation on the trapping of internal tides. J. Phys. Oceanogr. 37, 27402763.
Echeverri, P., Yokossi, T., Balmforth, N. J. & Peacock, T. 2011 Tidally generated internal-wave attractors between double ridges. J. Fluid Mech. 669, 354374.
Grisouard, N., Staquet, C. & Pairaud, I. 2008 Numerical simulation of a two-dimensional internal wave attractor. J. Fluid Mech. 614, 114.
Hazewinkel, J., van Breevoort, P., Dalziel, S. B. & Maas, L. R. M. 2008 Observations on the wavenumber spectrum and evolution of an internal wave attractor. J. Fluid Mech. 598, 373382.
Hazewinkel, J., Grisouard, N. & Dalziel, S. B. 2011 Comparison of laboratory and numerically observed scalar fields of an internal wave attractor. Eur J. Mech. (B/Fluids) 30 (1), 5156.
Hazewinkel, J., Tsimitri, C., Maas, L. R. M. & Dalziel, S. B. 2010 Observations on the robustness of internal wave attractors to perturbations. Phys. Fluids 22, 107102.
Howard, L. N. & Yu, J. 2007 Normal modes of a rectangular tank with corrugated bottom. J. Fluid Mech. 593, 209234.
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Liu, Y. & Yue, D. K. P. 1998 On generalised Bragg scattering of surface waves by bottom ripples. J. Fluid Mech. 356, 297326.
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F.-P. A. 1997 Observation of an internal wave attractor in a confined stably-stratified fluid. Nature 388, 557561.
Maas, L. R. M. & Lam, F.-P. A. 1995 Geometric focusing of internal waves. J. Fluid Mech. 300, 141.
Pietrzak, J. D., Kranenburg, C. & Abraham, G. 1990 Resonant internal waves in fluid flow. Nature 344, 844847.
Pietrzak, J. D. & Labeur, R. J. 2004 Trapped internal waves over undular topography in a partially mixed estuary. Ocean. Dyn. 54, 315323.
Rhines, P. & Bretherton, F. 1973 Topographic Rossby waves in a rough-bottomed ocean. J. Fluid Mech. 61, 583607.
Scolan, H., Ermanyuk, E. & Dauxios, T. 2013 Nonlinear fate of internal wave attractors. Phys. Rev. Lett. 110 (23), 234501.
Weidman, P. D., Herczynski, A., Yu, J. & Howard, L. N. 2015 Experiments on standing waves in a rectangular tank with a corrugated bed. J. Fluid Mech. 777, 122150.
Whitham, G. B. 1979 Lectures on Wave Propagation. Published for the Tata Institute of Fundamental Research, Springer.
Yu, J. & Howard, L. N. 2010 On higher order Bragg resonance of water waves by bottom corrugations. J. Fluid Mech. 659, 484504.
Yu, J. & Howard, L. N. 2012 Exact Floquet theory for waves over arbitrary periodic topographies. J. Fluid Mech. 712, 451470.
Yu, J. & Zheng, G. 2012 Exact solutions for wave propagation over a patch of large bottom corrugations. J. Fluid Mech. 713, 362375.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed