Skip to main content Accessibility help

The nature of triad interactions in active turbulence

  • Jonasz Słomka (a1), Piotr Suwara (a1) and Jörn Dunkel (a1)


Generalised Navier–Stokes (GNS) equations describing three-dimensional active fluids with flow-dependent narrow spectral forcing have been shown to possess numerical solutions that can sustain significant energy transfer to larger scales by realising chiral Beltrami-type chaotic flows. To rationalise these findings, we study here the triad truncations of polynomial and Gaussian GNS models focusing on modes lying in the energy injection range. Identifying a previously unknown cubic invariant for the triads, we show that their asymptotic dynamics reduces to that of a forced rigid body coupled to a particle moving in a magnetic field. This analogy allows us to classify triadic interactions by their asymptotic stability: unstable triads correspond to rigid-body forcing along the largest and smallest principal axes, whereas stable triads arise from forcing along the middle axis. Analysis of the polynomial GNS model reveals that unstable triads induce exponential growth of energy and helicity, whereas stable triads develop a limit cycle of bounded energy and helicity. This suggests that the unstable triads dominate the initial relaxation stage of the full hydrodynamic equations, whereas the stable triads determine the statistically stationary state. To test whether this hypothesis extends beyond polynomial dispersion relations, we introduce and investigate an alternative Gaussian active turbulence model. Similar to the polynomial case, the steady-state chaotic flows in the Gaussian model spontaneously accumulate non-zero mean helicity while exhibiting Beltrami statistics and upward energy transport. Our results suggest that self-sustained Beltrami-type flows and an inverse energy cascade may arise generically in the presence of flow-dependent narrow spectral forcing.


Corresponding author

Email address for correspondence:


Hide All
Alexakis, A. 2017 Helically decomposed turbulence. J. Fluid Mech. 812, 752770.
Arnold, V. I. 1989 Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60. Springer.
Arnold, V. I. & Khesin, B. A. 1999 Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125. Springer.
Ascher, U. M., Ruuth, S. J. & Wetton, B. T. R. 1995 Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (3), 797823.
Beresnev, I. A. & Nikolaevskiy, V. N. 1993 A model for nonlinear seismic waves in a medium with instability. Physica D 66, 16.
Biferale, L., Buzzicotti, M. & Linkmann, M. 2017 From two-dimensional to three-dimensional turbulence through two-dimensional three-component flows. Phys. Fluids 29, 111101.
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108 (16), 164501.
Biferale, L., Musacchio, S. & Toschi, F. 2013 Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence. J. Fluid Mech. 730, 309327.
Borue, V. & Orszag, S. A. 1997 Spectra in helical three-dimensional homogeneous isotropic turbulence. Phys. Rev. E 55 (6), 7005.
Bratanov, V., Jenko, F. & Frey, E. 2015 New class of turbulence in active fluids. Proc. Natl Acad. Sci. USA 112 (49), 1504815053.
Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. 2013 Emergence of macroscopic directed motion in populations of motile colloids. Nature 503 (7474), 9598.
Brissaud, A., Frisch, U., Leorat, J., Lesieur, M. & Mazure, A. 1973 Helicity cascades in fully developed isotropic turbulence. Phys. Fluids 16 (8), 13661367.
Brotto, T., Caussin, J.-B., Lauga, E. & Bartolo, D. 2013 Hydrodynamics of confined active fluids. Phys. Rev. Lett. 110, 038101.
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.
Constantin, P. & Majda, A. 1988 The Beltrami spectrum for incompressible fluid flows. Commun. Math. Phys. 115 (3), 435456.
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E. & Kessler, J. O. 2004 Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93 (9), 098103.
Dunkel, J., Heidenreich, S., Drescher, K., Wensink, H. H., Bär, M. & Goldstein, R. E. 2013 Fluid dynamics of bacterial turbulence. Phys. Rev. Lett. 110 (22), 228102.
Falkovich, G. & Sreenivasan, K. R. 2006 Lessons from hydrodynamic turbulence. Phys. Today 59 (4), 4349.
Frisch, U. 2004 Turbulence. Cambridge University Press.
Gantmacher, F. R. 2000 The Theory of Matrices, vol. 2. AMS Chelsea Publishing.
Giomi, L. 2015 Geometry and topology of turbulence in active nematics. Phys. Rev. X 5 (3), 031003.
Howse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.
Hudson, S. R., Hole, M. J. & Dewar, R. L. 2007 Eigenvalue problems for beltrami fields arising in a three-dimensional toroidal magnetohydrodynamic equilibrium problem. Phys. Plasmas 14 (5), 052505.
Ishikawa, T., Yoshida, N., Ueno, H., Wiedeman, M., Imai, Y. & Yamaguchi, T. 2011 Energy transport in a concentrated suspension of bacteria. Phys. Rev. Lett. 107 (2), 028102.
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.
Kraichnan, R. H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59 (04), 745752.
Lee, J. M. 2013 Introduction to Smooth Manifolds, 2nd edn. Springer.
Lessinnes, T., Plunian, F. & Carati, D. 2009 Helical shell models for mhd. Theor. Comput. Fluid Dyn. 23 (6), 439.
Linkmann, M., Berera, A., McKay, M. & Jäger, J. 2016 Helical mode interactions and spectral transfer processes in magnetohydrodynamic turbulence. J. Fluid Mech. 791, 6196.
Linkmann, M. & Dallas, V. 2017 Triad interactions and the bidirectional turbulent cascade of magnetic helicity. Phys. Rev. Fluids 2 (5), 054605.
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. & Simha, R. A. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143.
Marsh, G. E. 1996 Force-Free Magnetic Fields: Solutions, Topology and Applications. World Scientific.
Mendelson, N. H., Bourque, A., Wilkening, K., Anderson, K. R. & Watkins, J. C. 1999 Organized cell swimming motions in bacillus subtilis colonies: patterns of short-lived whirls and jets. J. Bacteriol. 181 (2), 600609.
Moffatt, H. K. 2014a Helicity and singular structures in fluid dynamics. Proc. Natl Acad. Sci. USA 111 (10), 36633670.
Moffatt, H. K. 2014b Note on the triad interactions of homogeneous turbulence. J. Fluid Mech. 741, R3.
Needleman, D. & Dogic, Z. 2017 Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048.
Pedley, T. J. 2010 Collective behaviour of swimming micro-organisms. Exp. Mech. 50, 12931301.
Rathmann, N. M. & Ditlevsen, P. D. 2017 Pseudo-invariants contributing to inverse energy cascades in three-dimensional turbulence. Phys. Rev. Fluids 2, 054607.
Sahoo, G., Alexakis, A. & Biferale, L. 2017 Discontinuous transition from direct to inverse cascade in three-dimensional turbulence. Phys. Rev. Lett. 118 (16), 164501.
Saintillan, D. & Shelley, M. 2008 Instabilities, pattern formation and mixing in active suspensions. Phys. Fluids 20, 123304.
Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. 2012 Spontaneous motion in hierarchically assembled active matter. Nature 491, 431434.
Słomka, J. & Dunkel, J. 2017a Geometry-dependent viscosity reduction in sheared active fluids. Phys. Rev. Fluids 2, 043102.
Słomka, J. & Dunkel, J. 2017b Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3d active fluids. Proc. Natl Acad. Sci. USA 114 (9), 21192124.
Sokolov, A. & Aranson, I. S. 2012 Physical properties of collective motion in suspensions of bacteria. Phys. Rev. Lett. 109 (24), 248109.
Sokolov, A., Aranson, I. S., Kessler, J. O. & Goldstein, R. E. 2007 Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98 (15), 158102.
Tribelsky, M. I. 2008 Patterns in dissipative systems with weakly broken continuous symmetry. Phys. Rev. E 77, 035202.
Tribelsky, M. I. & Tsuboi, K. 1996 New scenario for transition to turbulence? Phys. Rev. Lett. 76, 16311634.
Urzay, J., Doostmohammadi, A. & Yeomans, J. M. 2017 Multi-scale statistics of turbulence motorized by active matter. J. Fluid Mech. 822, 762773.
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4 (2), 350363.
Waleffe, F. 1993 Inertial transfers in the helical decomposition. Phys. Fluids A 5 (3), 677685.
Walther, A. & Muller, A. H. E. 2008 Janus particles. Soft Matt. 4, 663668.
Wensink, H. H., Dunkel, J., Heidenreich, S., Drescher, K., Goldstein, R. E., Löwen, H. & Yeomans, J. M. 2012 Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109 (36), 1430814313.
Wolgemuth, C. W. 2008 Collective swimming and the dynamics of bacterial turbulence. Biophys. J. 95 (4), 15641574.
Yoshida, Z., Mahajan, S. M., Ohsaki, S., Iqbal, M. & Shatashvili, N. 2001 Beltrami fields in plasmas: high-confinement mode boundary layers and high beta equilibria. Phys. Plasmas 8 (5), 21252131.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

The nature of triad interactions in active turbulence

  • Jonasz Słomka (a1), Piotr Suwara (a1) and Jörn Dunkel (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.