Skip to main content Accessibility help
×
Home

Nonlinear aspects of focusing internal waves

  • Natalia D. Shmakova (a1) (a2) and Jan-Bert Flór (a1)

Abstract

When a torus oscillates horizontally in a linearly stratified fluid, the wave rays form a double cone, one upward and one downward, with two focal points where the wave amplitude has a maximum due to wave focusing. Following a former study on linear aspects of wave focusing (Ermanyuk et al., J. Fluid Mech., vol. 813, 2017, pp. 695–715), we here consider experimental results on the nonlinear aspects that occur in the focal region below the torus for higher-amplitude forcing. A new non-dimensional number that is based on heuristic arguments for the wave amplitude in the focal area is presented. This focusing number is defined as $Fo=(A/a)\unicode[STIX]{x1D716}^{-1/2}f(\unicode[STIX]{x1D703})$ , with oscillation amplitude $A$ , $f(\unicode[STIX]{x1D703})$ a function for the variation of the wave amplitude with wave angle $\unicode[STIX]{x1D703}$ , and $\unicode[STIX]{x1D716}^{1/2}=\sqrt{b/a}$ the increase in amplitude due to the focusing, with $a$ and $b$ , respectively, the minor and major radius of the torus. Nonlinear effects occur for $Fo\geqslant 0.1$ , with the shear stress giving rise to a mean flow which results in the focal region in a central upward motion partially surrounded by a downward motion. With increasing $Fo$ , the Richardson number $Ri$ measured from the wave steepness monotonically decreases. Wave breaking occurs at $Fo\approx 0.23$ , corresponding to $Ri=0.25$ . In this regime, the focal region is unstable due to triadic wave resonance. For the different tori sizes under consideration, the triadic resonant instability in these three-dimensional flows resembles closely the resonance observed by Bourget et al. (J. Fluid Mech., vol. 723, 2013, pp. 1–20) for a two-dimensional flow, with only minor differences. Application to internal tidal waves in the ocean are discussed.

Copyright

Corresponding author

Email address for correspondence: flor@legi.cnrs.fr

References

Hide All
Bourget, B., Dauxois, T., Joubaud, S. & Odier, P. 2013 Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech. 723, 120.
Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V. & Dauxois, T. 2016 Internal wave attractors examined using laboratory experiments and 3d numerical simulations. J. Fluid Mech. 793, 109131.
Bühler, O. & Muller, C. J. 2007 Instability and focusing of internal tides in the deep ocean. J. Fluid Mech. 588, 128.
Buijsman, M. C., Legg, S. & Klymak, J. 2012 Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr. 42, 13371356.
Dale, A. C. & Inall, M. E. 2015 Tidal mixing processes amid small-scale, deep-ocean topography. Geophys. Res. Lett. 42, 484491.
Dauxois, T., Joubaud, S., Odier, Ph. & Venaille, A. 2018 Instabilities of internal gravity wave beams. Ann. Rev. Fluid Mech. 50, 131156.
Duran-Matute, M., Flór, J.-B., Godeferd, F. S. & Jause-Labert, C. 2013 Turbulence and columnar vortex formation through inertial-wave focusing. Phys. Rev. E 87, 041001(R).
Ermanyuk, E. V., Flór, J.-B. & Voisin, B. 2011 Spatial structure of first and higher harmonic internal waves from a horizontally oscillating sphere. J. Fluid Mech. 671, 364383.
Ermanyuk, E. V., Shmakova, N. D. & Flór, J.-B. 2017 Internal wave focusing by a horizontally oscillating torus. J. Fluid Mech. 813, 695715.
Fan, B., Kataoka, T. & Akylas, T. R. 2018 On the interaction of an internal wavepacket with its induced mean flow and the role of streaming. J. Fluid Mech. 838, R1.
Flandrin, P. 1998 Time–Frequency/Time–Scale Analysis. Academic Press.
Flynn, M. R., Onu, K. & Sutherland, B. R. 2003 Internal wave excitation by a vertically oscillating sphere. J. Fluid Mech. 494, 6593.
Hurley, D. G. & Keady, G. 1997 The generation of internal waves by vibrating elliptic cylinders. Part 2. Approximate viscous solution. J. Fluid Mech. 351, 119138.
Kataoka, T. & Akylas, T. R. 2016 Three-dimensional instability of internal gravity wave beams. Proc. International Symposium on Stratified Flows, 8th, 29 August–1 September, San Diego. University of California San Diego.
King, B., Zhang, H. P. & Swinney, H. L. 2009 Tidal flow over three-dimensional topography in a stratified fluid. Phys. Fluids 21, 116601.
Mercier, M. J., Garnier, N. B. & Dauxois, T. 2008 Reflection and diffraction of internal waves analyzed with the Hilbert transform. Phys. Fluids 20, 086601.
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496508.
Onu, K., Flynn, M. R. & Sutherland, B. R. 2003 Schlieren measurement of axisymmetric internal wave amplitudes. Exp. Fluids 35, 2431.
Peliz, A., Le Cann, B. & Mohn, C. 2009 Circulation and mixing in a deep submerged crater: tore seamount. Geophys. Res. Abstr. 11, EGU2009–7567–1.
Shmakova, N., Ermanyuk, E. & Flór, J.-B. 2017 Generation of higher harmonic internal waves by oscillating spheroids. Phys. Rev. Fluids 2, 114801.
Vlasenko, V., Stashchuk, N., Inall, M. E., Porter, M. & Aleynik, D. 2016 Focusing of baroclinic tidal energy in a canyon. J. Geophys. Res. 121, 28242840.
Voisin, B. 2003 Limit states of internal wave beams. J. Fluid Mech. 496, 243293.
Voisin, B., Ermanyuk, E. V. & Flór, J.-B. 2011 Internal wave generation by oscillation of a sphere, with application to internal tides. J. Fluid Mech. 666, 308357.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed