Skip to main content Accessibility help
×
×
Home

A numerical study on reaction-induced radial fingering instability

  • Vandita Sharma (a1), Satyajit Pramanik (a2), Ching-Yao Chen (a3) and Manoranjan Mishra (a1) (a4)

Abstract

The dynamics of $A+B\rightarrow C$ fronts is analysed numerically in a radial geometry. We are interested to understand miscible fingering instabilities when the simple chemical reaction changes the viscosity of the fluid locally and a non-monotonic viscosity profile with a global maximum or minimum is formed. We consider viscosity-matched reactants $A$ and $B$ generating a product $C$ having different viscosity than the reactants. Depending on the effect of $C$ on the viscosity relative to the reactants, different viscous fingering (VF) patterns are captured which are in good qualitative agreement with the existing radial experiments. We have found that, for a given chemical reaction rate, an unfavourable viscosity contrast is not always sufficient to trigger the instability. For every fixed Péclet number ( $Pe$ ), these effects of chemical reaction on VF are summarized in the Damköhler number ( $Da$ ) $-$ the log-mobility ratio ( $R_{c}$ ) parameter space that exhibits a stable region separating two unstable regions corresponding to the cases of more and less viscous product. Fixing $Pe$ , we determine $Da$ -dependent critical log-mobility ratios $R_{c}^{+}$ and $R_{c}^{-}$ such that no VF is observable whenever $R_{c}^{-}\leqslant R_{c}\leqslant R_{c}^{+}$ . The effect of geometry is observable on the onset of instability, where we obtain significant differences from existing results in the rectilinear geometry.

Copyright

Corresponding author

Email address for correspondence: manoranjan@iitrpr.ac.in

References

Hide All
Bischofberger, I., Ramachandran, R. & Nagel, S. R 2014 Fingering versus stability in the limit of zero interfacial tension. Nat. Commun. 5, 5265 EP –.
Brau, F., Schuszter, G. & De Wit, A. 2017 Flow control of A + BC fronts by radial injection. Phys. Rev. Lett. 118, 134101.
Brockmann, D. & Helbing, D. 2013 The hidden geometry of complex, network-driven contagion phenomena. Science 342 (6164), 13371342.
Chen, C.-Y., Huang, C.-W., Gadêlha, H. & Miranda, J. A. 2008 Radial viscous fingering in miscible Hele-Shaw flows: a numerical study. Phys. Rev. E 78, 016306.
Chen, C.-Y., Huang, Y.-S. & Miranda, J. A. 2011 Diffuse-interface approach to rotating Hele-Shaw flows. Phys. Rev. E 84, 046302.
Chen, C.-Y., Huang, Y.-S. & Miranda, J. A. 2014 Radial Hele-Shaw flow with suction: fully nonlinear pattern formation. Phys. Rev. E 89, 053006.
Chen, C.-Y. & Meiburg, E. 1998 Miscible porous media displacements in the quarter five-spot configuration. Part 1. The homogeneous case. J. Fluid Mech. 371, 233268.
De Wit, A. 2016 Chemo-hydrodynamic patterns in porous media. Phil. Trans. R. Soc. Lond. A 374 (2078), 20150419.
De Wit, A. & Homsy, G. M. 1999 Viscous fingering in reaction-diffusion systems. J. Chem. Phys. 110 (17), 86638675.
Gérard, T. & De Wit, A. 2009 Miscible viscous fingering induced by a simple A + BC chemical reaction. Phys. Rev. E 79, 016308.
Haudin, F., Cartwright, J. H. E., Brau, F. & De Wit, A. 2014 Spiral precipitation patterns in confined chemical gardens. Proc. Natl Acad. Sci. USA 111 (49), 1736317367.
Hejazi, S. H. & Azaiez, J. 2010 Non-linear interactions of dynamic reactive interfaces in porous media. Chem. Engng Sci. 65 (2), 938949.
Hejazi, S. H., Trevelyan, P. M. J., Azaiez, J. & De Wit, A. 2010 Viscous fingering of a miscible reactive A + BC interface: a linear stability analysis. J. Fluid Mech. 652, 501528.
Lega, J. & Passot, T. 2007 Hydrodynamics of bacterial colonies. Nonlinearity 20 (1), C1.
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.
Maes, R., Rousseaux, G., Scheid, B., Mishra, M., Colinet, P. & De Wit, A. 2010 Experimental study of dispersion and miscible viscous fingering of initially circular samples in Hele-Shaw cells. Phys. Fluids 22 (12), 123104.
Nagatsu, Y. & De Wit, A. 2011 Viscous fingering of a miscible reactive A + BC interface for an infinitely fast chemical reaction: nonlinear simulations. Phys. Fluids 23 (4), 043103.
Nagatsu, Y., Matsuda, K., Kato, Y. & Tada, Y. 2007 Experimental study on miscible viscous fingering involving viscosity changes induced by variations in chemical species concentrations due to chemical reactions. J. Fluid Mech. 571, 475493.
Nagilla, A., Prabhakar, R. & Jadhav, S. 2018 Linear stability of an active fluid interface. Phys. Fluids 30 (2), 022109.
Podgorski, T., Sostarecz, M. C., Zorman, S. & Belmonte, A. 2007 Fingering instabilities of a reactive micellar interface. Phys. Rev. E 76, 016202.
Riolfo, L. A., Nagatsu, Y., Iwata, S., Maes, R., Trevelyan, P. M. J. & De Wit, A. 2012 Experimental evidence of reaction-driven miscible viscous fingering. Phys. Rev. E 85, 015304.
Tan, C. T. & Homsy, G. M. 1987 Stability of miscible displacements in porous media: radial source flow. Phys. Fluids 30 (5), 12391245.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed