Skip to main content Accessibility help
×
Home

Pore-scale modelling of multiphase reactive flow: application to mineral dissolution with production of $\text{CO}_{2}$

  • Cyprien Soulaine (a1), Sophie Roman (a1) (a2), Anthony Kovscek (a1) and Hamdi A. Tchelepi (a1)

Abstract

A micro-continuum approach is proposed to simulate the dissolution of solid minerals at the pore scale in the presence of multiple fluid phases. The approach employs an extended Darcy–Brinkman–Stokes formulation that accounts for the interfacial tension between the two immiscible fluid phases and the moving contact line at the mineral surface. The simulation framework is validated using an experimental microfluidic device that provides time-lapse images of the dissolution dynamics. The set-up involves a single-calcite crystal and the subsequent generation of $\text{CO}_{2}$ bubbles in the domain. The dissolution of the calcite crystal and the production of gas during the acidizing process are analysed. We then show that the production of $\text{CO}_{2}$ bubbles during the injection of acid in a carbonate formation may limit the overall dissolution rate and prevent the emergence of wormholes.

Copyright

Corresponding author

Email address for correspondence: csoulain@stanford.edu

References

Hide All
Algive, L., Bekri, S. & Vizika, O. 2010 Pore-network modeling dedicated to the determination of the petrophysical-property changes in the presence of reactive fluid. SPE J. 15 (03), 618633.
Angot, P., Bruneau, C.-H. & Fabrie, P. 1999 A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81 (4), 497520.
Bastami, A., Allahgholi, M. & Pourafshary, P. 2014 Experimental and modelling study of the solubility of CO2 in various CACL2 solutions at different temperatures and pressures. Petrol. Sci. 11 (4), 569577.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.
Brinkman, H. C. 1947 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 2734.
Buchgraber, M., Al-Dossary, M., Ross, C. M. & Kovscek, A. R. 2012 Creation of a dual-porosity micromodel for pore-level visualization of multiphase flow. J. Petrol. Sci. Engng 86 (0), 2738.
Békri, S., Thovert, J. F. & Adler, P. M. 1995 Dissolution of porous media. Chem. Engng Sci. 50 (17), 27652791.
Chen, L., Kang, Q., Mu, Y., He, Y.-L. & Tao, W.-Q. 2014a A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. Intl J. Heat Mass Transfer 76, 210236.
Chen, L., Kang, Q., Robinson, B. A., He, Y.-L. & Tao, W.-Q. 2013 Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems. Phys. Rev. E 87, 043306.
Chen, L., Kang, Q., Tang, Q., Robinson, B. A., He, Y.-L. & Tao, W.-Q. 2015 Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation. Intl J. Heat Mass Transfer 85, 935949.
Chen, L., Kang, Q., Viswanathan, H. S. & Tao, W.-Q. 2014b Pore-scale study of dissolution-induced changes in hydrologic properties of rocks with binary minerals. Water Resour. Res. 50 (12), 93439365.
Cohen, Y. & Rothman, D. H. 2015 Mechanisms for mechanical trapping of geologically sequestered carbon dioxide. Proc. R. Soc. Lond. A 471, 20140853.
Daccord, G. 1987 Chemical dissolution of a porous medium by a reactive fluid. Phys. Rev. Lett. 58 (5), 479482.
Daccord, G. & Lenormand, R. 1987 Fractal patterns from chemical dissolution. Nature 325 (6099), 4143.
Daccord, G., Lietard, O. & Lenormand, R. 1993 Chemical dissolution of a porous medium by a reactive fluid. II. Convection vs reaction, behavior diagram. Chem. Engng Sci. 48 (1), 179186.
Damian, S. M.2013 An extended mixture model for the simultaneous treatment of short and long scale interfaces. PhD thesis, Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral.
Deising, D., Marschall, H. & Bothe, D. 2016 A unified single-field model framework for volume-of-fluid simulations of interfacial species transfer applied to bubbly flows. Chem. Engng Sci. 139, 173195.
Eddings, M. A., Johnson, M. A. & Gale, B. K. 2008 Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J. Micromech. Microengng 18, 067001067004.
Fredd, C. N. & Fogler, H. S. 1998a Alternative stimulation fluids and their impact on carbonate acidizing. SPE J. 13 (1), 3441.
Fredd, C. N. & Fogler, H. S. 1998b Influence of transport and reaction on wormhole formation in porous media. AIChE J. 44 (9), 19331949.
Garing, C., Gouze, P., Kassab, M., Riva, M. & Guadagnini, A. 2015 Anti-correlated porosity–permeability changes during the dissolution of carbonate rocks: experimental evidences and modeling. Trans. Porous Med. 107 (2), 595621.
Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D. & Quintard, M. 2002 On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213254.
Graveleau, M., Soulaine, C. & Tchelepi, H. A. 2017 Pore-scale simulation of interphase multicomponent mass transfer for subsurface flow. Trans. Porous Med. 120 (2), 287308.
Guibert, R., Nazarova, M., Horgue, P., Hamon, G., Creux, P. & Debenest, G. 2015 Computational permeability determination from pore-scale imaging: sample size, mesh and method sensitivities. Trans. Porous Med. 107 (3), 641656.
Guo, D. Z., Sun, D. L., Li, Z. Y. & Tao, W. Q. 2011 Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the VOSET method. Numer. Heat Transfer A 59 (11), 857881.
Guo, J., Laouafa, F. & Quintard, M. 2016 A theoretical and numerical framework for modeling gypsum cavity dissolution. Intl J. Numer. Anal. Meth. Geomech. 40, 16621689.
Guo, J., Quintard, M. & Laouafa, F. 2015 Dispersion in porous media with heterogeneous nonlinear reactions. Trans. Porous Med. 109 (3), 541570.
Haroun, Y., Legendre, D. & Raynal, L. 2010 Volume of fluid method for interfacial reactive mass transfer: application to stable liquid film. Chem. Engng Sci. 65 (10), 28962909.
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.
Horgue, P., Prat, M. & Quintard, M. 2014 A penalization technique applied to the volume-of-fluid method: wettability condition on immersed boundaries. Comput. Fluids 100, 255266.
Horgue, P., Soulaine, C., Franc, J., Guibert, R. & Debenest, G. 2015 An open-source toolbox for multiphase flow in porous media. Comput. Phys. Commun. 187 (0), 217226.
Huang, H. & Li, X. 2011 Pore-scale simulation of coupled reactive transport and dissolution in fractures and porous media using the level set interface tracking method. J. Nanjing Univ. (Natural Sciences) 47 (3), 235251.
Huber, C., Shafei, B. & Parmigiani, A. 2014 A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation. Geochim. Cosmochim. Acta 124 (0), 109130.
Issa, R. I. 1985 Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 4065.
Jasak, H.1996 Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Department of Mechanical Engineering Imperial College of Science, Technology and Medicine.
Juric, Damir & Tryggvason, Grétar 1998 Computations of boiling flows. Intl J. Multiphase Flow 24 (3), 387410.
Kang, Q., Chen, L., Valocchi, A. J. & Viswanathan, H. S. 2014 Pore-scale study of dissolution-induced changes in permeability and porosity of porous media. J. Hydrol. 517, 10491055.
Kang, Q., Zhang, D. & Chen, S. 2003 Simulation of dissolution and precipitation in porous media. J. Geophys. Res. 108 (B10), 15.
Khadra, K., Angot, P., Parneix, S. & Caltagirone, J.-P. 2000 Fictitious domain approach for numerical modelling of Navier–Stokes equations. Intl J. Numer. Meth. Fluids 34 (8), 651684.
Kim, D., Peters, C. A. & Lindquist, W. B. 2011 Upscaling geochemical reaction rates accompanying acidic CO2 -saturated brine flow in sandstone aquifers. Water Resour. Res. 47 (1), W01505.
Li, L., Peters, C. A. & Celia, M. A. 2006 Upscaling geochemical reaction rates using pore-scale network modeling. Adv. Water Resour. 29 (9), 13511370.
Li, X., Huang, H. & Meakin, P. 2010 A three-dimensional level set simulation of coupled reactive transport and precipitation/dissolution. Intl J. Heat Mass Transfer 53 (13), 29082923.
Lichtner, P. C. & Kang, Q. 2007 Upscaling pore-scale reactive transport equations using a multiscale continuum formulation. Water Resour. Res. 43 (12), W12S15.
Liu, X., Ormond, A., Bartko, K., Ying, L. & Ortoleva, P. 1997 A geochemical reaction-transport simulator for matrix acidizing analysis and design. J. Petrol. Sci. Engng 17 (1), 181196.
Liu, X. & Ortoleva, P. 1996 A general-purpose, geochemical reservoir simulator. In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers.
Luo, H., Laouafa, F., Debenest, G. & Quintard, M. 2015 Large scale cavity dissolution: from the physical problem to its numerical solution. Eur. J. Mech. (B/Fluids) 52, 131146.
Luo, H., Laouafa, F., Guo, J. & Quintard, M. 2014 Numerical modeling of three-phase dissolution of underground cavities using a diffuse interface model. Intl J. Numer. Anal. 38, 16001616.
Luo, H., Quintard, M., Debenest, G. & Laouafa, F. 2012 Properties of a diffuse interface model based on a porous medium theory for solid–liquid dissolution problems. Comput. Geosci. 16 (4), 913932.
Maes, J. & Geiger, S. 2017 Direct pore-scale reactive transport modelling of dynamic wettability changes induced by surface complexation. Adv. Water Resour. 111, 619.
Maes, J. & Soulaine, C. 2018 A new compressive scheme to simulate species transfer across fluid interfaces using the volume-of-fluid method. Chem. Engng Sci. 190, 405418.
Marschall, H., Hinterberger, K., Schüler, C., Habla, F. & Hinrichsen, O. 2012 Numerical simulation of species transfer across fluid interfaces in free-surface flows using OpenFOAM. Chem. Engng Sci. 78, 111127.
Mauri, R. 1991 Dispersion, convection, and reaction in porous media. Phys. Fluids A 3 (5), 743756.
McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H. K., Schueller, O. J. A. & Whitesides, G. M. 2000 Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21 (1), 2740.
Molins, S., Trebotich, D., Miller, G. H. & Steefel, C. I. 2017 Mineralogical and transport controls on the evolution of porous media texture using direct numerical simulation. Water Resour. Res. 53 (5), 36453661.
Neale, G. & Nader, W. 1974 Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engng 52 (4), 475478.
Nogues, J. P., Fitts, J. P., Celia, M. A. & Peters, C. A. 2013 Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resour. Res. 49 (9), 60066021.
Oltéan, C., Golfier, F. & Buès, M. A. 2013 Numerical and experimental investigation of buoyancy-driven dissolution in vertical fracture. J. Geophys. Res. 118 (5), 20382048.
Orgogozo, L., Renon, N., Soulaine, C., Hénon, F., Tomer, S. K., Labat, D., Pokrovsky, O. S., Sekhar, M., Ababou, R. & Quintard, M. 2014 An open source massively parallel solver for Richards equation: mechanistic modelling of water fluxes at the watershed scale. Comput. Phys. Commun. 185 (12), 33583371.
Ormond, A. & Ortoleva, P. 2000 Numerical modeling of reaction-induced cavities in a porous rock. J. Geophys. Res. 105 (B7), 1673716747.
Ott, H. & Oedai, S. 2015 Wormhole formation and compact dissolution in single-and two-phase CO2 -brine injections. Geophys. Res. Lett. 42 (7), 22702276.
Parmigiani, A., Huber, C., Bachmann, O. & Chopard, B. 2011 Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 40.
Portier, S., Vuataz, F.-D., Nami, P., Sanjuan, B. & Gérard, A. 2009 Chemical stimulation techniques for geothermal wells: experiments on the three-well egs system at Soultz-sous-Forêts, France. Geothermics 38 (4), 349359.
Prutton, C. F. & Savage, R. L. 1945 The solubility of carbon dioxide in calcium chloride-water solutions at 75, 100, 120 and high pressures. J. Am. Chem. Soc. 67 (9), 15501554.
Rathnaweera, T. D., Ranjith, P. G. & Perera, M. S. A. 2016 Experimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers. Sci. Rep. 6, 19362.
Roman, S., Abu-Al-Saud, M. O., Tokunaga, T., Wan, J., Kovscek, A. R. & Tchelepi, H. A. 2017 Measurements and simulation of liquid films during drainage displacements and snap-off in constricted capillary tubes. J. Colloid Interface Sci. 507, 279289.
Roman, S., Lorthois, S., Duru, P. & Risso, F. 2012 Velocimetry of red blood cells in microvessels by the dual-slit method: effect of velocity gradients. Microvasc. Res. 84 (3), 249261.
Roman, S., Soulaine, C., AlSaud, M. A., Kovscek, A. & Tchelepi, H. 2016 Particle velocimetry analysis of immiscible two-phase flow in micromodels. Adv. Water Resour. 95, 199211.
Rudman, M. 1997 Volume-tracking methods for interfacial flow calculations. Intl J. Numer. Meth. Fluids 24 (7), 671691.
Rusche, H.2003 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College London (University of London).
Scheibe, T. D., Perkins, W. A., Richmond, M. C., McKinley, M. I., Romero-Gomez, P. D. J., Oostrom, Mart, Wietsma, T. W., Serkowski, J. A. & Zachara, J. M. 2015 Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column. Water Resour. Res. 51 (2), 10231035.
Shapiro, M. & Brenner, H. 1988 Dispersion of a chemically reactive solute in a spatially periodic model of a porous medium. Chem. Engng Sci. 43 (3), 551571.
Song, W., de Haas, T. W., Fadaei, H. & Sinton, D. 2014 Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels. Lab on a Chip 14, 43824390.
Soulaine, C., Gjetvaj, F., Garing, C., Roman, S., Russian, A., Gouze, P. & Tchelepi, H. 2016 The impact of sub-resolution porosity of X-ray microtomography images on the permeability. Trans. Porous Med. 113 (1), 227243.
Soulaine, C., Roman, S., Kovscek, A. & Tchelepi, H. A. 2017 Mineral dissolution and wormholing from a pore-scale perspective. J. Fluid Mech. 827, 457483.
Soulaine, C. & Tchelepi, H. A. 2016a Micro-continuum approach for pore-scale simulation of subsurface processes. Trans. Porous Med. 113, 431456.
Soulaine, C. & Tchelepi, H. A. 2016b Micro-continuum formulation for modelling dissolution in natural porous media. In ECMOR XV – 15th European Conference on the Mathematics of Oil Recovery, 29 August–1 September 2016, Amsterdam, Netherlands, pp. 111. EAGE.
Starchenko, V., Marra, C. J. & Ladd, A. J. C. 2016 Three-dimensional simulations of fracture dissolution. J. Geophys. Res. 121, 64216444.
Steefel, C. I., Molins, S. & Trebotich, D. 2013 Pore scale processes associated with subsurface CO2 injection and sequestration. Rev. Mineral. Geochem. 77 (1), 259303.
Swoboda-Colberg, N. G. & Drever, J. I. 1993 Mineral dissolution rates in plot-scale field and laboratory experiments. Chem. Geol. 105 (1–3), 5169.
Szymczak, P. & Ladd, A. J. C. 2004 Microscopic simulations of fracture dissolution. Geophys. Res. Lett. 31 (23), 14.
Szymczak, P. & Ladd, A. J. C. 2009 Wormhole formation in dissolving fractures. J. Geophys. Res. 114 (B6), 122.
Tartakovsky, A. M., Meakin, P., Scheibe, T. D. & West, R. M. E. 2007 Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J. Comput. Phys. 222 (2), 654672.
Thompson, K. E. & Gdanski, R. D. 1993 Laboratory study provides guidelines for diverting acid with foam. SPE Prod. Facilities 8 (04), 285290.
Trebotich, D. & Graves, D. 2015 An adaptive finite volume method for the incompressible Navier–Stokes equations in complex geometries. Commun. Appl. Maths Comput. Sci. 10 (1), 4382.
Varloteaux, C., Békri, S. & Adler, P. M. 2013a Pore network modelling to determine the transport properties in presence of a reactive fluid: from pore to reservoir scale. Adv. Water Resour. 53, 87100.
Varloteaux, C., Vu, M. T., Békri, S. & Adler, P. M. 2013b Reactive transport in porous media: pore-network model approach compared to pore-scale model. Phys. Rev. E 87 (2), 023010.
Voller, V. R. 2009 Numerical Methods for Phase-Change Problems, pp. 593622. Wiley.
Wang, C.-Y. & Beckermann, C. 1993 A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media. I. Formulation. Intl J. Heat Mass Transfer 36, 27472747.
Welch, S. W. J. & Wilson, J. 2000 A volume of fluid based method for fluid flows with phase change. J. Comput. Phys. 160 (2), 662682.
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.
Whitaker, S. 1999 The Method of Volume Averaging, Theory and Applications of Transport in Porous Media. Kluwer Academic.
Williams, B. B., Gidley, J. L. & Schechter, R. S. 1979 Acidizing Fundamentals. Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers of AIME.
Xu, Z., Huang, H., Li, X. & Meakin, P. 2012 Phase field and level set methods for modeling solute precipitation and/or dissolution. Comput. Phys. Commun. 183 (1), 1519.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Pore-scale modelling of multiphase reactive flow: application to mineral dissolution with production of $\text{CO}_{2}$

  • Cyprien Soulaine (a1), Sophie Roman (a1) (a2), Anthony Kovscek (a1) and Hamdi A. Tchelepi (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed