Skip to main content Accessibility help
×
×
Home

Scaling bounds on dissipation in turbulent flows

  • Christian Seis (a1)

Abstract

We propose a new rigorous method for estimating statistical quantities in fluid dynamics such as the (average) energy dissipation rate directly from the equations of motion. The method is tested on shear flow, channel flow, Rayleigh–Bénard convection and porous medium convection.

Copyright

Corresponding author

Email address for correspondence: seis@iam.uni-bonn.de

References

Hide All
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Busse, F. 1979 The optimum theory of turbulence. Adv. Appl. Mech. 18, 77121.
Busse, F. H. 1970 Bounds for turbulent shear flows. J. Fluid Mech. 41 (1), 219240.
Chuffrut, A., Nobili, C. & Otto, F.2014 Bounds on Nusselt number at finite Prandtl number; Preprint arXiv:1412.4812.
Constantin, P. & Doering, C. R. 1995 Variational bounds on energy dissipation in incompressible flows. II. Channel flow. Phys. Rev. E 51, 31923198.
Doering, C. R. & Constantin, P. 1994 Variational bounds on energy dissipation in incompressible flows: shear flow. Phys. Rev. E 49, 40874099.
Doering, C. R. & Constantin, P. 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53, 59575981.
Doering, C. R. & Constantin, P. 1998 Bounds for heat transport in a porous layer. J. Fluid Mech. 376, 263296.
Frisch, U. 1995 Turbulence. Cambridge University Press, (the legacy of A. N. Kolmogorov).
Hassanzadeh, P., Chini, G. P. & Doering, C. R. 2014 Wall to wall optimal transport. J. Fluid Mech. 751, 627662.
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2012 Ultimate regime of high Rayleigh number convection in a porous medium. Phys. Rev. Lett. 108, 224503.
Hopf, E. 1941 Ein allgemeiner Endlichkeitssatz der Hydrodynamik. Math. Ann. 117, 764775.
Howard, L. N. 1972 Bounds on flow quantities. Annu. Rev. Fluid Mech. 4 (1), 473494.
Keller, J. B., Rubenfeld, L. A. & Molyneux, J. E. 1967 Extremum principles for slow viscous flows with applications to suspensions. J. Fluid Mech. 30 (1), 97125.
Kerswell, R. R. 1998 Unification of variational principles for turbulent shear flows: the background method of Doering–Constantin and the mean-fluctuation formulation of Howard–Busse. Physica D 121 (1–2), 175192.
Lathrop, D. P., Fineberg, J. & Swinney, H. L. 1992 Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46, 63906405.
Malkus, W. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225 (1161), 196212.
Nicodemus, R., Grossmann, S. & Holthaus, M. 1997 Improved variational principle for bounds on energy dissipation in turbulent shear flow. Physica D 101 (1–2), 178190.
Otto, F. & Seis, C. 2011 Rayleigh–Bénard convection: improved bounds on the Nusselt number. J. Math. Phys. 52 (8), 083702,1–24.
Petrov, N. P., Lu, L. & Doering, C. R. 2005 Variational bounds on the energy dissipation rate in body-forced shear flow. J. Turbul. 6, p. N17, http://dx.doi.org/10.1080/14685240500228262.
Seis, C. 2013 Laminar boundary layers in convective heat transport. Commun. Math. Phys. 324 (3), 9951031.
Serrin, J. 1959 Mathematical principles of classical fluid mechanics. In Fluid Dynamics I/Strömungsmechanik I (ed. Truesdell, C.), Encyclopedia of Physics/Handbuch der Physik, vol. 3/8/1, pp. 125263. Springer.
Whitehead, J. P. & Doering, C. R. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106, 244501.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed