Skip to main content Accessibility help
×
Home

Shallow water wave turbulence

  • Pierre Augier (a1), Ashwin Vishnu Mohanan (a2) and Erik Lindborg (a2)

Abstract

The dynamics of irrotational shallow water wave turbulence forced at large scales and dissipated at small scales is investigated. First, we derive the shallow water analogue of the ‘four-fifths law’ of Kolmogorov turbulence for a third-order structure function involving velocity and displacement increments. Using this relation and assuming that the flow is dominated by shocks, we develop a simple model predicting that the shock amplitude scales as $(\unicode[STIX]{x1D716}d)^{1/3}$ , where $\unicode[STIX]{x1D716}$ is the mean dissipation rate and $d$ the mean distance between the shocks, and that the $p$ th-order displacement and velocity structure functions scale as $(\unicode[STIX]{x1D716}d)^{p/3}r/d$ , where $r$ is the separation. Then we carry out a series of forced simulations with resolutions up to $7680^{2}$ , varying the Froude number, $F_{f}=(\unicode[STIX]{x1D716}L_{f})^{1/3}/c$ , where $L_{f}$ is the forcing length scale and $c$ is the wave speed. In all simulations a stationary state is reached in which there is a constant spectral energy flux and equipartition between kinetic and potential energy in the constant flux range. The third-order structure function relation is satisfied with a high degree of accuracy. Mean energy is found to scale approximately as $E\sim \sqrt{\unicode[STIX]{x1D716}L_{f}c}$ , and is also dependent on resolution, indicating that shallow water wave turbulence does not fit into the paradigm of a Richardson–Kolmogorov cascade. In all simulations shocks develop, displayed as long thin bands of negative divergence in flow visualisations. The mean distance between the shocks is found to scale as $d\sim F_{f}^{1/2}L_{f}$ . Structure functions of second and higher order are found to scale in good agreement with the model. We conclude that in the weak limit, $F_{f}\rightarrow 0$ , shocks will become denser and weaker and finally disappear for a finite Reynolds number. On the other hand, for a given $F_{f}$ , no matter how small, shocks will prevail if the Reynolds number is sufficiently large.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Shallow water wave turbulence
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Shallow water wave turbulence
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Shallow water wave turbulence
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: erikl@mech.kth.se

References

Hide All
Apazidis, N. & Eliasson, V. 2018 Shock Focusing Phenomena. Springer.
Atta, C. W. V. & Antonia, R. A. 1980 Reynolds number dependence of skewness and flatmenss factor of turbulent velocity derivatives. Phys. Fluids 23, 252257.
Augier, P., Chomaz, J.-M. & Billant, P. 2012 Spectral analysis of the transition to turbulence from a dipole in stratified fluids. J. Fluid Mech. 713, 86108.
Augier, P., Galtier, S. & Billant, P. 2012 Kolmogorov laws for stratified turbulence. J. Fluid Mech. 709, 659670.
Augier, P. & Lindborg, E. 2013 A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci. 70, 22932308.
Augier, P., Mohanan, A. V. & Bonamy, C. 2019 FluidDyn: a python open-source framework for research and teaching in fluid dynamics. J. Open Res. Softw. 7 (1), 9.
Baines, P. G. 1998 Topographic Effects in Stratified Flows. Cambridge University Press.
Bouchaud, J. P., Mezard, M. & Parisi, G. 1995 Scaling and intermittency in Burgers turbulence. Phys. Rev. E 52 (4, A), 36563674.
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.
Burgers, J. M. 1948 A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 47, 95114.
Falkovich, G., Fouxon, I. & Oz, Y. 2010 New relations for correlation functions in Navier–Stokes turbulence. J. Fluid Mech. 644, 465472.
Falkovich, G. & Meyer, M. 1996 Two-dimensional acoustic turbulence. Phys. Rev. E 54, 44314434.
Falkovich, G. E. & Medvedev, S. B. 1992 Kolmogorov-like spectrum for turbulence of inertial-gravity waves. Europhys. Lett. 19 (4), 279284.
Farge, M. & Sadourny, R. 1989 Wave vortex dynamics in rotating shallow-water. J. Fluid Mech. 206, 433462.
Frisch, U. 1995 Turbulence. Cambridge University Press.
Frisch, U. & Bec, J. 2001 Burgulence. In New Trends in Turbulence Turbulence: Nouveaux Aspects. Les Houches – Ecole d’Ete de Physique Theorique, vol. 74 (ed. Lesieur, M., Yaglom, A. & David, F.). Springer.
Galtier, S. & Banarjee, S. 2011 Exact relations for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett. 107, 134501.
Hamilton, K., Takahashi, Y. O. & Ohfuchi, W. 2008 Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res. Atmos. 113, D18110.
Kadomtsev, B. & Petviashvili, V. 1973 On acoustic turbulence. Dokl. Akad. Nauk SSSR 208 (4), 794796.
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30 (4). English translation in Proc. R. Soc. Lond. A 434 (1991), 913, 9–13.
Koshyk, J. N. & Hamilton, K. 2001 The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci. 58 (4), 329348.
Kuznetsov, E. A. 2004 Turbulence spectra generated by singularities. J. Expl Theor. Phys. Lett. 80 (2), 8389.
Lahaye, N. & Zeitlin, V. 2012 Decaying vortex and wave turbulence in rotating shallow water model, as follows from high-resolution direct numerical simulations. Phys. Fluids 24, 115106.
Li, Q. & Lindborg, L. 2018 Weakly or strongly nonlinear mesoscale dynamics close to the tropopause? J. Atmos. Sci. 75, 12151229.
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.
Lindborg, E. 2007 Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J. Atmos. Sci. 64 (3), 10171025.
Lindborg, E. 2019 A note on acoustic turbulence. J. Fluid Mech. 874, R2.
Lindborg, E. & Mohanan, A. V. 2017 A two-dimensional toy model for geophysical turbulence. Phys. Fluids 29, 111114.
Liverts, M. & Apazidis, N. 2016 Limiting temperatures of spherical shock wave implosion. Phys. Rev. Lett. 116, 014501.
Lorenz, E. N. 1955 Available potential energy and the maintenance of the general circulation. Tellus 7, 157.
Lorenz, E. 1980 Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37 (8), 16851699.
Lundbladh, A., Berlin, S., Skote, M., Hildings, C., Choi, J., Kim, J. & Henningson, D. S.1999 An efficient spectral method for simulation of incompressible flow over a flat plate. Trita-mek. Tech. Rep. 11.
Meneveau, C. & Sreenivasan, K. R. 1987 Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 12241227.
Mohanan, A. V., Bonamy, C. & Augier, P. 2019a FluidFFT: common API (C++ and Python) for fast Fourier transform libraries. J. Open Res. Softw. 7 (1), 10.
Mohanan, A. V., Bonamy, C. & Augier, P. 2019b FluidSim: modular, object-oriented python package for high-performance CFD simulations. J. Open Res. Softw. 7 (1), 14.
Mohebalhojeh, A. R. & Dritschel, D. G. 2000 On the representation of gravity waves in numerical models of the shallow-water equations. Q. J. R. Meteorol. Soc. 126 (563), 669688.
Nastrom, G. D. & Gage, K. S. 1985 A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42 (9), 950960.
Nazarenko, S. 2011 Wave Turbulence. Springer.
Phillips, O. M. 1965 The Dynamics of the Upper Ocean. Cambridge University Press.
Polvani, L. M., McWilliams, J. C., Spall, M. A. & Ford, R. 1994 The coherent structures of shallow-water turbulence: deformation-radius effects, cyclone/anticyclone asymmetry and gravity-wave generation. Chaos 4 (2), 177186.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Sadourny, R. 1975 The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci. 32 (4), 680689.
Skamarock, W. C. 2004 Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Weath. Rev. 132 (12), 30193032.
Stein, R. F. & Spiegel, E. A. 1967 Radiative damping of sound waves. J. Acoust. Soc. Am. 42, 866869.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.
Vanneste, J. 2013 Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech. 45, 147172.
Vassilicos, J. C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 1, 171199.
Warn, T. 1986 Statistical mechanical equilibria of the shallow-water equations. Tellus A 38 (1), 111.
Weinan, E. & Eijnden, E. V. V. 1999 Asymptotic theory for the probability density functions in burgers turbulence. Phys. Rev. Lett. 83 (13), 25722575.
Weinan, E., Khanin, K., Mazel, A. & Sinai, Y. 1997 Probability distribution functions for the random forced burgers equation. Phys. Rev. Lett. 78 (10), 19041907.
Whitham, G. B. 1974 Linear and Nonlinear Waves. John Wiley.
Wirth, A. 2013 Inertia-gravity waves generated by near balanced flow in 2-layer shallow water turbulence on the 𝛽-plane. Nonlinear Process. Geophys. 20, 2534.
Yuan, L. & Hamilton, K. 1994 Equilibrium dynamics in a forced-dissipative f-plane shallow-water system. J. Fluid Mech. 280, 369394.
Zakharov, V. E. & Sagdeev, R. Z. 1970 Spectrum of acoustic turbulence. Sov. Phys. Dokl. 15, 439441.
Zakharov, V. E., L’vov, V. S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence 1. Wave Turbulence. Springer.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed