Skip to main content Accessibility help
×
×
Home

The shape and motion of gas bubbles in a liquid flowing through a thin annulus

  • Q. Lei (a1), Z. Xie (a1) (a2) (a3), D. Pavlidis (a1), P. Salinas (a1), J. Veltin (a4), O. K. Matar (a2), C. C. Pain (a1), A. H. Muggeridge (a1), A. J. Gyllensten (a5) and M. D. Jackson (a1)...

Abstract

We study the shape and motion of gas bubbles in a liquid flowing through a horizontal or slightly inclined thin annulus. Experimental data show that in the horizontal annulus, bubbles develop a unique ‘tadpole-like’ shape with a semi-circular cap and a highly stretched tail. As the annulus is inclined, the bubble tail tends to vanish, resulting in a significant decrease of bubble length. To model the bubble evolution, the thin annulus is conceptualised as a ‘Hele-Shaw’ cell in a curvilinear space. The three-dimensional flow within the cell is represented by a gap-averaged, two-dimensional model, which achieved a close match to the experimental data. The numerical model is further used to investigate the effects of gap thickness and pipe diameter on the bubble behaviour. The mechanism for the semi-circular cap formation is interpreted based on an analogous irrotational flow field around a circular cylinder, based on which a theoretical solution to the bubble velocity is derived. The bubble motion and cap geometry is mainly controlled by the gravitational component perpendicular to the flow direction. The bubble elongation in the horizontal annulus is caused by the buoyancy that moves the bubble to the top of the annulus. However, as the annulus is inclined, the gravitational component parallel to the flow direction becomes important, causing bubble separation at the tail and reduction in bubble length.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The shape and motion of gas bubbles in a liquid flowing through a thin annulus
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The shape and motion of gas bubbles in a liquid flowing through a thin annulus
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The shape and motion of gas bubbles in a liquid flowing through a thin annulus
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: q.lei12@imperial.ac.uk

References

Hide All
Antonini, C., Carmona, F. J., Pierce, E., Marengo, M. & Amirfazli, A. 2009 General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces. Langmuir 25 (11), 61436154.
Beavers, G. S., Sparrow, E. M. & Magnuson, R. A. 1970 Experiments on the breakdown of laminar flow in a parallel-plate channel. Intl J. Heat Mass Transfer 13, 809815.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.
Bush, J. W. M. 1997 The anomalous wake accompanying bubbles rising in a thin gap: a mechanically forced Marangoni flow. J. Fluid Mech. 352, 283303.
Bush, J. W. M. & Eames, I. 1998 Fluid displacement by high Reynolds number bubble motion in a thin gap. Intl J. Multiphase Flow 24 (3), 411430.
Collins, R. 1965a A simple model of the plane gas bubble in a finite liquid. J. Fluid Mech. 22, 763771.
Collins, R. 1965b Structure and behaviour of wakes behind two-dimensional air bubbles in water. Chem. Engng Sci. 20, 851853.
Collins, R. 1967a The cycloidal-cap bubble: a neglected solution in the theory of large plane gas bubbles in liquids. Chem. Engng Sci. 22, 8997.
Collins, R. 1967b The effect of a containing cylindrical boundary on the velocity of a large gas bubble in a liquid. J. Fluid Mech. 28 (1), 97112.
Collins, R., de Moraes, F. F., Davidson, J. F. & Harrison, D. 1978 The motion of a large gas bubble rising through liquid flowing in a tube. J. Fluid Mech. 89, 497514.
Cotter, C. J., Ham, D. A., Pain, C. C. & Reich, S. 2009 LBB stability of a mixed Galerkin finite element pair for fluid flow simulations. J. Comput. Phys. 228 (2), 336348.
Couet, B. & Strumolo, G. S. 1987 The effects of surface tension and tube inclination on a two-dimensional rising bubble. J. Fluid Mech. 184, 114.
Cueto-Felgueroso, L. & Juanes, R. 2014 A phase-field model of two-phase Hele-Shaw flow. J. Fluid Mech. 758, 522552.
Das, G., Das, P. K., Purohit, N. K. & Mitra, A. K. 1998 Rise velocity of a Taylor bubble through concentric annulus. Chem. Engng Sci. 53 (5), 977993.
Davies, R. M. & Taylor, G. I. 1950 The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. Lond. A 200 (1062), 375390.
Dussan, E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech. 11, 371400.
Eck, W. & Siekmann, J. 1978 On bubble motion in a Hele-Shaw cell, a possibility to study two-phase flows under reduced gravity. Ing.-Arch. 47, 153168.
Ekberg, N. P., Ghiaasiaan, S. M., Abdel-Khalik, S. I., Yoda, M. & Jeter, S. M. 1999 Gas–liquid two-phase flow in narrow horizontal annuli. Nucl. Engng Des. 192, 5980.
Fabre, J. 2016 A long bubble rising in still liquid in a vertical channel: a plane inviscid solution. J. Fluid Mech. 797, R4.
Fabre, J. & Liné, A. 1992 Modeling of two-phase slug flow. Annu. Rev. Fluid Mech. 24, 2146.
Figueroa-Espinoza, B. & Fabre, J. 2011 Taylor bubble moving in a flowing liquid in vertical channel: transition from symmetric to asymmetric shape. J. Fluid Mech. 679, 432454.
Filella, A., Ern, P. & Roig, V. 2015 Oscillatory motion and wake of a bubble rising in a thin-gap cell. J. Fluid Mech. 778, 6088.
Gondret, P. & Rabaud, M. 1997 Shear instability of two-fluid parallel flow in a Hele-Shaw cell. Phys. Fluids 9 (11), 32673274.
Grace, J. R. & Harrison, D. 1967 The influence of bubble shape on the rising velocities of large bubbles. Chem. Engng Sci. 22, 13371347.
Griffith, P. & Wallis, G. B. 1961 Two-phase slug flow. Trans. ASME J. Heat Transfer 83, 307318.
Hills, J. H. 1975 The two-dimensional elliptical cap bubble. J. Fluid Mech. 68, 503512.
Huisman, S. G., Ern, P. & Roig, V. 2012 Interactions and coalescence of large bubbles rising in a thin gap. Phys. Rev. E 85, 027302.
Kelessidis, V. C. & Dukler, A. E. 1990 Motion of large gas bubbles through liquids in vertical concentric and eccentric annuli. Intl J. Multiphase Flow 16 (3), 375390.
Kelley, E. & Wu, M. 1997 Path instability of rising air bubbles in a Hele-Shaw cell. Phys. Rev. Lett. 79 (7), 12651268.
Klaseboer, E., Gupta, R. & Manica, R. 2014 An extended Bretherton model for long Taylor bubbles at moderate capillary numbers. Phys. Fluids 26, 032107.
Kopf-Sill, A. R. & Homsy, G. M. 1988 Bubble motion in a Hele-Shaw cell. Phys. Fluids 31, 1826.
Lazarek, G. M. & Littman, H. 1974 The pressure field due to a large circular capped air bubble rising in water. J. Fluid Mech. 66, 673687.
Li, G., Su, H., Kuhn, U., Meusel, H., Ammann, M., Shao, M., Pöschl, U. & Cheng, Y. 2018 Technical note: influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies. Atmos. Chem. Phys. 18 (4), 26692686.
Maneri, C. C. & Zuber, N. 1974 An experimental study of plane bubbles rising at inclination. Intl J. Multiphase Flow 1, 623645.
Maruvada, S. R. K. & Park, C. W. 1996 Retarded motion of bubbles in Hele-Shaw cells. Phys. Fluids 8 (12), 32293233.
Maxworthy, T. 1986 Bubble formation, motion and interaction in a Hele-Shaw cell. J. Fluid Mech. 173, 95114.
McLean, J. W. & Saffman, P. G. 1981 The effect of surface tension on the shape of fingers in a Hele Shaw cell. J. Fluid Mech. 102, 455469.
Meiburg, E. 1989 Bubbles in a Hele-Shaw cell: numerical simulation of three-dimensional effects. Phys. Fluids A 1 (6), 938946.
Oliveira, R. M. & Meiburg, E. 2011 Miscible displacements in Hele-Shaw cells: three-dimensional Navier–Stokes simulations. J. Fluid Mech. 687, 431460.
Pain, C. C., Umpleby, A. P., de Oliveira, C. R. E. & Goddard, A. J. H. 2001 Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations. Comput. Meth. Appl. Mech. Engng 190 (29–30), 37713796.
Paras, S. V. & Karabelas, A. J. 1991 Properties of the liquid layer in horizontal annular flow. Intl J. Multiphase Flow 17 (4), 439454.
Park, C.-W. & Homsy, G. M. 1984 Two-phase displacement in Hele Shaw cells: theory. J. Fluid Mech. 139, 291308.
Pavlidis, D., Gomes, J. L. M. A., Xie, Z., Percival, J. R., Pain, C. C. & Matar, O. K. 2016 Compressive advection and multi-component methods for interface-capturing. Intl J. Numer. Meth. Fluids 80 (4), 256282.
Pavlidis, D., Xie, Z., Percival, J. R., Gomes, J. L. M. A., Pain, C. C. & Matar, O. K. 2014 Two- and three-phase horizontal slug flow simulations using an interface-capturing compositional approach. Intl J. Multiphase Flow 67, 8591.
Piedra, S., Ramos, E. & Herrera, J. R. 2015 Dynamics of two-dimensional bubbles. Phys. Rev. E 91 (6), 063013.
Pitts, E. 1980 Penetration of fluid into a Hele-Shaw cell: the Saffman–Taylor experiment. J. Fluid Mech. 97, 5364.
Reinelt, D. A. 1987a Interface conditions for two-phase displacement in Hele-Shaw cells. J. Fluid Mech. 183, 219234.
Reinelt, D. A. 1987b The rate at which a long bubble rises in a vertical tube. J. Fluid Mech. 175, 557565.
Roig, V., Roudet, M., Risso, F. & Billet, A.-M. 2012 Dynamics of a high-Reynolds-number bubble rising within a thin gap. J. Fluid Mech. 707, 444466.
Saffman, P. G. & Tanveer, S. 1989 Prediction of bubble velocity in a Hele-Shaw cell: thin film and contact angle effects. Phys. Fluids A 1 (2), 219223.
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1242), 312329.
Tanveer, S. 1986 The effect of surface tension on the shape of a Hele-Shaw cell bubble. Phys. Fluids 29 (11), 35373548.
Tanveer, S. 1987 New solutions for steady bubbles in a Hele-Shaw cell. Phys. Fluids 30 (3), 651658.
Tanveer, S. & Saffman, P. G. 1987 Stability of bubbles in a Hele-Shaw cell. Phys. Fluids 30 (9), 26242635.
Taylor, G. I. & Saffman, P. G. 1959 A note on the motion of bubbles in a Hele-Shaw cell and porous medium. Q. J. Mech. Appl. Math. 12, 265279.
Thompson, A. B., Juel, A. & Hazel, A. L. 2014 Multiple finger propagation modes in Hele-Shaw channels of variable depth. J. Fluid Mech. 746, 123164.
Thompson, B. W. 1968 Secondary flow in a Hele-Shaw cell. J. Fluid Mech. 372, 2544.
Tso, C. P. & Sugawara, S. 1990 Film thickness prediction in a horizontal annular two-phase flow. Intl J. Multiphase Flow 16 (5), 867884.
Vanden-Broeck, J.-M. 1984 Rising bubbles in a two-dimensional tube with surface tension. Phys. Fluids 27 (11), 26042607.
Vanden-Broeck, J.-M. 1992 Rising bubbles in a two-dimensional tube: asymptotic behavior for small values of the surface tension. Phys. Fluids A 4 (11), 23322334.
Viana, F., Pardo, R., Yánez, R., Trallero, J. L. & Joseph, D. D. 2003 Universal correlation for the rise velocity of long gas bubbles in round pipes. J. Fluid Mech. 494, 379398.
Wang, X., Klaasen, B., Degrève, J., Blanpain, B. & Verhaeghe, F. 2014 Experimental and numerical study of buoyancy-driven single bubble dynamics in a vertical Hele-Shaw cell. Phys. Fluids 26 (12), 123303.
Wang, X., Klaasen, B., Degrève, J., Mahulkar, A., Heynderickx, G., Reyniers, M.-F., Blanpain, B. & Verhaeghe, F. 2016 Volume-of-fluid simulations of bubble dynamics in a vertical Hele-Shaw cell. Phys. Fluids 28, 053304.
White, E. T. & Beardmore, R. H. 1962 The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes. Chem. Engng Sci. 17 (5), 351361.
Wilkes, J. O. 2006 Fluid Mechanics for Chemical Engineers with Microfluidics and CFD, 2nd edn. Prentice Hall.
Xie, Z., Hewitt, G. F., Pavlidis, D., Salinas, P., Pain, C. C. & Matar, O. K. 2017 Numerical study of three-dimensional droplet impact on a flowing liquid film in annular two-phase flow. Chem. Engng Sci. 166, 303312.
Xie, Z., Pavlidis, D., Percival, J. R., Gomes, J. L. M. A., Pain, C. C. & Matar, O. K. 2014 Adaptive unstructured mesh modelling of multiphase flows. Intl J. Multiphase Flow 67, 104110.
Xie, Z., Pavlidis, D., Salinas, P., Percival, J. R., Pain, C. C. & Matar, O. K. 2016 A balanced-force control volume finite element method for interfacial flows with surface tension using adaptive anisotropic unstructured meshes. Comput. Fluids 138, 3855.
Zukoski, E. E. 1966 Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes. J. Fluid Mech. 25, 821837.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed