Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T01:32:27.189Z Has data issue: false hasContentIssue false

A shear instability mechanism for the pulsations of Rayleigh–Taylor unstable model flames

Published online by Cambridge University Press:  06 May 2014

Abstract

Previous studies have shown that the behaviour of Rayleigh–Taylor (RT) unstable flames depends on the boundary conditions. If the boundary conditions at the domain walls are impermeable/adiabatic or reflecting then the flame assumes a stable parabolic shape. On the other hand, periodic boundary conditions can produce unstable pulsating solutions. In this paper, we explore why periodic boundary conditions allow unstable solutions by showing the results of two-dimensional direct numerical simulations of model flames. We show that RT unstable premixed model flames pulsate at low gravity because of a shear instability of the vorticity layers behind the flame front. The resulting vortex shedding is controlled by a region of absolute-like instability which moves closer to the flame front as gravity is increased, ultimately disturbing the flame and leading to pulsations. We demonstrate that this region is ‘absolutely unstable’ by showing that the wake is dominated by pure frequency oscillations. In addition, the shear instability can be described by the Landau equation and can be represented dynamically by a Hopf bifurcation. The applicability of the Landau equation allows the apparently complex spatio-temporal behaviour of the vortex shedding to be described by a simple temporal model with only a secondary spatial dependence. We show that the flame behaviour is analogous to the initial instability downstream of a circular cylinder, which leads to the von Kármán vortex street for large enough values of the Reynolds number.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathy, F. H. & Kronauer, R. E. 1962 The formation of vortex streets. J. Fluid Mech. 13 (1), 120.CrossRefGoogle Scholar
Bell, J. B., Day, M. S., Rendleman, C. A., Woosley, S. E. & Zingale, M. 2004 Direct numerical simulations of Type Ia supernovae flames. II. The Rayleigh–Taylor instability. Astrophys. J. 608, 883906.Google Scholar
Berestycki, H., Kagan, L., Kamin, S. & Sivashinsky, G. I. 2004 Metastable behavior of premixed gas flames in rectangular channels. Interfaces Free Bound. 6, 423438.Google Scholar
Berestycki, H., Kamin, S. & Sivashinsky, G. I. 1995 Nonlinear dynamics and metastability in a Burgers type equation (for upward propagating flames). C. R. Acad. Sci. Paris I 321, 185190.Google Scholar
Berestycki, H., Kamin, S. & Sivashinsky, G. I. 2001 Metastability in a flame front evolution equation. Interfaces Free Bound. 3 (4), 361392.CrossRefGoogle Scholar
Bychkov, V. V., Golberg, S. M., Liberman, M. A. & Eriksson, L. E. 1996 Propagation of curved stationary flames in tubes. Phys. Rev. E 54, 37133724.Google Scholar
Bychkov, V. V. & Liberman, M. A. 2000 Dynamics and stability of premixed flames. Phys. Rep. 325, 115237.Google Scholar
Chertkov, M., Lebedev, V. & Vladimirova, N. 2009 Reactive Rayleigh–Taylor turbulence. J. Fluid Mech. 633, 116.Google Scholar
Cheviakov, A. F. & Ward, M. J. 2007 A two-dimensional metastable flame-front and degenerate spike-layer problem. Interfaces Free Bound. 9, 513547.Google Scholar
Clavin, P. & Williams, F. A. 1982 Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 116, 251282.CrossRefGoogle Scholar
Constantin, P., Kiselev, A. & Ryzhik, L. 2003 Fronts in reactive convection: bounds, stability, and instability. Commun. Pure Appl. Maths 56 (12), 17811803.Google Scholar
Creta, F. & Matalon, M. 2011 Strain rate effects on the nonlinear development of hydrodynamically unstable flames. Proc. Combust. Inst. 33 (1), 10871094.CrossRefGoogle Scholar
Damkohler, G. 1940 (trans. 1947) Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemishen (English Translation: the effects of turbulence on the flame velocity in gas mixtures). Z. Elektrochem. 46 (trans. 1112), 601626; (trans. in Technical memorandums. United States. National Advisory Committee for Aeronautics) (trans. 1–51).Google Scholar
Darrieus, G.1938 Propagation d’un front de flamme. Unpublished Work, Presented at La Technique Moderne (Paris), and in 1945 at Congrès de Mécanique Appliqueé (Paris).Google Scholar
Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability. 2nd edn Cambridge University Press.Google Scholar
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 Nek5000 Web Page. http://nek5000.mcs.anl.gov.Google Scholar
Gerrard, J. H. 1966 The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech. 25 (2), 401413.Google Scholar
Guidi, L. F. & Marchetti, D. H. U. 2003 A comparison analysis of Sivashinsky’s type evolution equations describing flame propagation in channels. Phys. Lett. A 308 (2–3), 162172.Google Scholar
Hicks, E. P. & Rosner, Robert. 2013 Gravitationally unstable flames: Rayleigh–Taylor stretching versus turbulent wrinkling. Astrophys. J. 771 (2), 135.Google Scholar
Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.CrossRefGoogle Scholar
Kamin, S., Berestycki, H., Kagan, L. & Sivashinsky, G. I. 2005 Metastable behavior of premixed gas flames. Progr. Nonlinear Differential Equations Appl. 630, 319328.Google Scholar
Khokhlov, A. M. 1995 Propagation of turbulent flames in supernovae. Astrophys. J. 449, 695713.CrossRefGoogle Scholar
Koch, W. 1985 Local instability characteristics and frequency determination of self-excited wake flows. J. Sound Vib. 99 (1), 5383.Google Scholar
Landau, L. D. 1944 On the theory of slow combustion. Acta Physicochim. USSR 19, 1785.Google Scholar
Landau, L. D. & Lifshitz, E. M. 2004 Fluid Mechanics, 2nd edn, Course of Theoretical Physics, vol. 6 Elsevier Science Ltd.Google Scholar
Markstein, G. H.(Ed.) 1964 Non-Steady Flame Propagation, The Macmillan Company.Google Scholar
Marsden, Jerold. E. & McCracken, M. 1976 The Hopf Bifurcation and its Applications. Springer.Google Scholar
Matalon, M. 2007 Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 391, 163191.CrossRefGoogle Scholar
Matalon, M., Cui, C. & Bechtold, J. K. 2003 Hydrodynamic theory of premixed flames: effects of stoichiometry, variable transport coefficients and arbitrary reaction orders. J. Fluid Mech. 487, 179210.Google Scholar
Matalon, M. & Matkowsky, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239259.Google Scholar
Michelson, D. M. & Sivashinsky, G. I. 1977 Nonlinear analysis of hydrodynamic instability in laminar flames – II. Numerical experiments. Acta Astronaut. 4 (11–12), 12071221.CrossRefGoogle Scholar
Mikishev, A. B. & Sivashinsky, G. I. 1993 Quasi-equilibrium in upward propagating flames. Phys. Lett. A 175 (6), 409414.Google Scholar
Monkewitz, P. A. & Nguyen, L. N. 1987 Absolute instability in the near-wake of two-dimensional bluff bodies. J. Fluids Struct. 1 (2), 165184.Google Scholar
Ou, C. & Ward, M. J. 2006 A metastable flame-front interface and Carrier’s problem. J. Comput. Appl. Maths 190 (1–2), 354375.Google Scholar
Pelce, P. & Clavin, P. 1982 Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219237.Google Scholar
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.Google Scholar
Rakib, Z. & Sivashinsky, G. I. 1987 Instabilities in upward propagating flames. Combust. Sci. Technol. 54, 6984.Google Scholar
Rastigejev, Y. & Matalon, M. 2006 Nonlinear evolution of hydrodynamically unstable premixed flames. J. Fluid Mech. 554, 371392.Google Scholar
Rayleigh, Lord 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170177.Google Scholar
Sivashinsky, G. I. 1977 Nonlinear analysis of hydrodynamic instability in laminar flames – I. Derivation of basic equations. Acta Astronaut. 4 (11–12), 11771206.Google Scholar
Sprott, J. C. 2003 Chaos and Time-Series Analysis. Oxford University Press.CrossRefGoogle Scholar
Sreenivasan, K. R., Strykowski, P. J. & Olinger, D. J. 1987 Hopf bifurcation, Landau equation, and vortex shedding behind circular cylinders. In Forum on Unsteady Flow Separation (ed. Ghia, K. N.), pp. 113. ASME.Google Scholar
Strykowski, P. J.1986 The control of absolutely and convectively unstable flows. PhD thesis, Yale University.Google Scholar
Strykowski, P. J. & Sreenivasan, K. R. 1990 On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers. J. Fluid Mech. 218, 71107.CrossRefGoogle Scholar
Sun, X. & Ward, M. J. 1999 Metastability for a generalized Burgers equation with applications to propagating flame fronts. Eur. J. Appl. Maths 10, 2753.Google Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201, 192196.Google Scholar
Thual, O., Frisch, U. & Hénon, M. 1985 Application of pole decomposition to an equation governing the dynamics of wrinkled flame fronts. J. Physique 46, 14851494.CrossRefGoogle Scholar
Vaynblat, D. & Matalon, M. 2000a Stability of pole solutions for planar propagating flames: I. Exact eigenvalues and eigenfunctions. SIAM J. Appl. Maths 60 (2), 679702.Google Scholar
Vaynblat, D. & Matalon, M. 2000b Stability of pole solutions for planar propagating flames: II. Properties of eigenvalues/eigenfunctions and implications to stability. SIAM J. Appl. Maths 60 (2), 703728.CrossRefGoogle Scholar
Vladimirova, N. & Rosner, R. 2003 Model flames in the Boussinesq limit: the effects of feedback. Phys. Rev. E 67 (6), 066305.Google Scholar
Vladimirova, N. & Rosner, R. 2005 Model flames in the Boussinesq limit: the case of pulsating fronts. Phys. Rev. E 71 (6), 067303.Google Scholar
Vladimirova, N., Weirs, V. G. & Ryzhik, L. 2006 Flame capturing with an advection–reaction–diffusion model. Combust. Theor. Model. 10 (4), 727747.CrossRefGoogle Scholar
Xin, J. 2000 Front propagation in heterogeneous media. SIAM Rev. 42 (2), 161230.CrossRefGoogle Scholar
Zeldovich, Ya. B., Barenblatt, G. I., Librovich, V. B. & Makhviladze, G. M. 1985 The Mathematical Theory of Combustion and Explosions. Consultants Bureau.Google Scholar
Zhang, J., Bronson Messer, O. E., Khokhlov, A. M. & Plewa, T. 2007 On the evolution of thermonuclear flames on large scales. Astrophys. J. 656, 347365.Google Scholar
Zingale, M., Woosley, S. E., Rendleman, C. A., Day, M. S. & Bell, J. B. 2005 Three-dimensional numerical simulations of Rayleigh–Taylor unstable flames in Type Ia supernovae. Astrophys. J. 632, 10211034.Google Scholar