Skip to main content

Spectral broadening of acoustic waves by convected vortices

  • Vincent Clair (a1) (a2) and Gwénaël Gabard (a1) (a3)

The scattering of acoustic waves by a moving vortex is studied in two dimensions to bring further insight into the physical mechanisms responsible for the spectral broadening caused by a region of turbulence. When propagating through turbulence, a monochromatic sound wave will be scattered over a range of frequencies, resulting in typical spectra with broadband sidelobes on either side of the tone. This spectral broadening, also called ‘haystacking’, is of importance for noise radiation from jet exhausts and for acoustic measurements in open-jet wind tunnels. A semianalytical model is formulated for a plane wave scattered by a vortex, including the influence of the convection of the vortex. This allows us to perform a detailed parametric study of the properties and evolution of the scattered field. A time-domain numerical model for the linearised Euler equations is also used to consider more general sound fields, such as that radiated by a point source in a uniform flow. The spectral broadening stems from the combination of the spatial scattering of sound due to the refraction of waves propagating through the vortex, and two Doppler shifts induced by the motion of the vortex relative to the source and of the observer relative to the vortex. The fact that the spectrum exhibits sidebands is directly explained by the directivity of the scattered field which is composed of several beams radiating from the vortex. The evolution of the acoustic spectra with the parameters considered in this paper is compared with the trends observed in previous experimental work on acoustic scattering by a jet shear layer.

Corresponding author
Email address for correspondence:
Hide All
Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. National Bureau of Standards.
Bennaceur, I., Mincu, D. C., Mary, I., Terracol, M., Larchevêque, L. & Dupont, P. 2016 Numerical simulation of acoustic scattering by a plane turbulent shear layer: spectral broadening study. Comput. Fluids 138, 8398.
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods. Courier Dover Publications.
Brown, E. & Clifford, S. 1973 Spectral broadening of an acoustic pulse propagating through turbulence. J. Acoust. Soc. Am. 54 (1), 3639.
Brown, E. H. 1974 Turbulent spectral broadening of backscattered acoustic pulses. J. Acoust. Soc. Am. 56 (5), 13981406.
Brown, E. H. & Clifford, S. F. 1976 On the attenuation of sound by turbulence. J. Acoust. Soc. Am. 60 (4), 788794.
Campos, L. M. B. C. 1978a The spectral broadening of sound by turbulent shear layers. Part 1. The transmission of sound through turbulent shear layers. J. Fluid Mech. 89 (4), 723749.
Campos, L. M. B. C. 1978b The spectral broadening of sound by turbulent shear layers. Part 2. The spectral broadening of sound and aircraft noise. J. Fluid Mech. 89 (4), 751783.
Candel, S. M. 1979 Numerical solution of wave scattering problems in the parabolic approximation. J. Fluid Mech. 90 (3), 465507.
Candel, S. M., Guédel, A. & Julienne, A. 1975 Refraction and scattering of sound in an open wind tunnel flow. In 6th International Congress on Instrumentation in Aerospace Simulation Facilities, pp. 288300. Institute of Electrical and Electronics Engineers.
Candel, S. M., Guédel, A. & Julienne, A. 1976a Radiation, refraction and scattering of acoustic waves in a free shear flow. In 3rd AIAA Aero-Acoustics Conference. AIAA Paper 76-544.
Candel, S. M., Julliand, M. & Julienne, A. 1976b Shielding and scattering by a jet flow. In 3rd AIAA Aero-Acoustics Conference. AIAA Paper 76-545.
Cheinet, S., Ehrhardt, L., Juvé, D. & Blanc-Benon, P. 2012 Unified modeling of turbulence effects on sound propagation. J. Acoust. Soc. Am. 132 (4), 21982209.
Clair, V. & Gabard, G. 2016 Numerical investigation on the spectral broadening of acoustic waves by a turbulent layer. In 22nd AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2016-2701.
Colonius, T., Lele, S. K. & Moin, P. 1994 The scattering of sound waves by a vortex: numerical simulations and analytical solutions. J. Fluid Mech. 260, 271298.
Dallois, L., Blanc-Benon, P. & Juvé, D. 2001 A wide-angle parabolic equation for acoustic waves in inhomogeneous moving media: applications to atmospheric sound propagation. J. Comput. Acoust. 9 (2), 477494.
Davies, B. 2012 Integral Transforms and their Applications. Springer.
Ehrhardt, L., Cheinet, S., Juvé, D. & Blanc-Benon, P. 2013 Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation. J. Acoust. Soc. Am. 133 (4), 19221933.
Ewert, R., Kornow, O., Delfs, J., Yin, J., Röber, T. & Rose, M. 2009 A CAA based approach to tone haystacking. In 15th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2009-3217.
Ewert, R., Kornow, O., Tester, B., Powles, C., Delfs, J. & Rose, M. 2008 Spectral broadening of jet engine turbine tones. In 14th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2008-2940.
Ferziger, J. H. 1974 Low-frequency acoustic scattering from a trailing vortex. J. Acoust. Soc. Am. 56 (6), 17051707.
Ford, R. & Llewellyn Smith, S. 1999 Scattering of acoustic waves by a vortex. J. Fluid Mech. 386, 305328.
Georges, T. M. 1972 Acoustic ray paths through a model vortex with a viscous core. J. Acoust. Soc. Am. 51 (1), 206209.
Goedecke, G. H., Wood, R. C., Auvermann, H. J., Ostashev, V. E., Havelock, D. I. & Ting, C. 2001 Spectral broadening of sound scattered by advecting atmospheric turbulence. J. Acoust. Soc. Am. 109 (5), 19231934.
Goldstein, M. E. 1976 Aeroacoustics. McGraw-Hill.
Guédel, A. 1985 Scattering of an acoustic field by a free jet shear layer. J. Sound Vib. 100 (2), 285304.
Hargreaves, J. A., Kendrick, P. & von Hünerbein, S. 2014 Simulating acoustic scattering from atmospheric temperature fluctuations using a k-space method. J. Acoust. Soc. Am. 135 (1), 8392.
Hattori, Y. & Llewellyn Smith, S. G. 2002 Axisymmetric acoustic scattering by vortices. J. Fluid Mech. 473, 275294.
Howe, M. S. 1973 Multiple scattering of sound by turbulence and other inhomogeneities. J. Sound Vib. 27 (4), 455476.
Howe, M. S. 1975 Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71 (4), 625673.
Karweit, M., Blanc-Benon, P., Juvé, D. & Comte-Bellot, G. 1991 Simulation of the propagation of an acoustic wave through a turbulent velocity field: a study of phase variance. J. Acoust. Soc. Am. 89 (1), 5262.
Kraichnan, R. H. 1953 The scattering of sound in a turbulent medium. J. Acoust. Soc. Am. 25 (6), 10961104.
Kröber, S., Hellmold, M. & Koop, L. 2013 Experimental investigation of spectral broadening of sound waves by wind tunnel shear layers. In 19th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2013-2255.
Lewis, H. R. & Bellan, P. M. 1990 Physical constraints on the coefficients of Fourier expansions in cylindrical coordinates. J. Math. Phys. 31 (11), 25922596.
Lighthill, M. J. 1953 On the energy scattered from the interaction of turbulence with sound or shock waves. Math. Proc. Cambridge Philos. Soc. 49, 531551.
Llewellyn Smith, S. G. & Ford, R. 2001a Three-dimensional acoustic scattering by vortical flows. I. General theory. Phys. Fluids 13 (10), 28762889.
Llewellyn Smith, S. G. & Ford, R. 2001b Three-dimensional acoustic scattering by vortical flows. II. Axisymmetric scattering by Hill’s spherical vortex. Phys. Fluids 13 (10), 28902900.
McAlpine, A., Powles, C. & Tester, B. J. 2013 A weak-scattering model for turbine-tone haystacking. J. Sound Vib. 332, 38063831.
Mohseni, K. & Colonius, T. 2000 Numerical treatment of polar coordinate singularities. J. Comput. Phys. 157, 787795.
Morse, P. M. & Ingard, K. U. 1968 Theoretical Acoustics. McGraw-Hill.
O’Shea, S. 1975 Sound scattering by a potential vortex. J. Sound Vib. 43 (1), 109116.
Ostashev, V. E., Salomons, E. M., Clifford, S. F., Lataitis, R. J., Wilson, D. K., Blanc-Benon, P. & Juvé, D. 2001 Sound propagation in a turbulent atmosphere near the ground: a parabolic equation approach. J. Acoust. Soc. Am. 109 (5), 18941908.
Powles, C. J., Tester, B. J. & McAlpine, A. 2011 A weak-scattering model for turbine-tone haystacking outside the cone of silence. Intl J. Aeroacoust. 10 (1), 1750.
Schlinker, R. H. & Amiet, R. K.1980 Refraction and scattering of sound by a shear layer. NASA Contractor Rep. 3371. NASA.
Sijtsma, P., Oerlemans, S., Tibbe, T., Berkefeld, T. & Spehr, C. 2014 Spectral broadening by shear layers of open jet wind tunnels. In 20th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2014-3178.
Tam, C. K. W. 2012 Computational Aeroacoustics: A Wave Number Approach. Cambridge University Press.
Tam, C. K. W. & Dong, Z. 1996 Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow. J. Comput. Acoust. 4 (2), 175201.
Thompson, K. W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 124.
Wilson, D. K., Ostashev, V. E., Goedecke, G. H. & Auvermann, H. J. 2004 Quasi-wavelet calculations of sound scattering behind barriers. Appl. Acoust. 65, 605627.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed