Skip to main content
×
×
Home

Stability and collapse of holes in liquid layers

  • Cunjing Lv (a1) (a2), Michael Eigenbrod (a1) and Steffen Hardt (a1)
Abstract

We investigate experimentally and theoretically the stability and collapse of holes in liquid layers on bounded substrates with various wettabilities. It is shown that for a liquid layer with a thickness of the order of the capillary length, a stable hole exists when the hole diameter is bigger than a critical value  $d_{c}$ . Consequently, a further increase of the liquid volume causes the hole to collapse. It is found that $d_{c}$ increases with the size of the container, but its dependence on the contact angle is very weak. The experimental results are compared with theory, and good agreement is obtained. Moreover, we present investigations of the dynamics of the hole and the evolution of the liquid film profile after the collapse. The diameter of the hole during collapse and the minimum thickness of the liquid film shortly after the collapse obey different power laws with time. Simple theoretical models are developed which indicate that the collapse of the hole is triggered by surface tension and the subsequent closure process results from inertia, whereas the growth of the liquid column after hole closure results from the balance between the capillary force and inertia. Corresponding scaling coefficients are determined.

Copyright
Corresponding author
Email address for correspondence: hardt@nmf.tu-darmstadt.de
References
Hide All
Bankoff, S. G., Johnson, M. F. G., Miksis, M. J., Schluter, R. A. & Lopez, P. G. 2003 Dynamics of a dry spot. J. Fluid Mech. 486, 239259.
Bird, J. C., Ristenpart, W. D., Belmonte, A. & Stone, H. A. 2009 Critical angle for electrically driven coalescence of two conical droplets. Phys. Rev. Lett. 103 (16), 164502.
Bostwick, J. B., Dijksman, J. A. & Shearer, M. 2017 Wetting dynamics of a collapsing fluid hole. Phys. Rev. Fluids 2 (1), 014006.
Brakke, K. A. 1992 The surface evolver. Exp. Math. 1 (2), 141165.
Burton, J. C., Waldrep, R. & Taborek, P. 2005 Scaling and instabilities in bubble pinch-off. Phys. Rev. Lett. 94 (18), 184502.
Cho, Y. S., Yi, Gi. R., Lim, J. M., Kim, S. H., Manoharan, V. N., Pine, D. J. & Yang, S. M. 2005 Self-organization of bidisperse colloids in water droplets. J. Am. Chem. Soc. 127 (45), 1596815975.
Chou, T. H., Hong, S. J., Liang, Y. E., Tsao, H. K. & Sheng, Y. J. 2011 Equilibrium phase diagram of drop-on-fiber: coexistent states and gravity effect. Langmuir 27 (7), 36853692.
Courbin, L., Bird, J. C., Reyssat, M. & Stone, H. A. 2009 Dynamics of wetting: from inertial spreading to viscous imbibition. J. Phys.: Condens. Matter 21 (46), 464127.
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.
Crawford, S., Lim, S. K. & Gradecak, S. 2013 Fundamental insights into nanowire diameter modulation and the liquid/solid interface. Nano Lett. 13 (1), 226232.
Debrégeas, G., De Gennes, P.-G. & Brochard-Wyart, F. 1998 The life and death of ‘bare’ viscous bubbles. Science 279 (5357), 17041707.
Diez, J. A., Gratton, R. & Gratton, J. 1992 Selfsimilar solution of the second kind for a convergent viscous gravity current. Phys. Fluids A 4 (6), 11481155.
Dijksman, J. A., Mukhopadhyay, S., Gaebler, C., Witelski, T. P. & Behringer, R. P. 2015 Obtaining self-similar scalings in focusing flows. Phys. Rev. E 92 (4), 043016.
Duchemin, L., Eggers, J. & Josserand, C. 2003 Inviscid coalescence of drops. J. Fluid Mech. 487, 167178.
Eddi, A., Winkels, K. G. & Snoeijer, J. H. 2013 Influence of droplet geometry on the coalescence of low viscosity drops. Phys. Rev. Lett. 111 (14), 144502.
Eggers, J., Fontelos, M. A., Leppinen, D. & Snoeijer, J. H. 2007 Theory of the collapsing axisymmetric cavity. Phys. Rev. Lett. 98 (9), 094502.
Eggers, J., Lister, J. R. & Stone, H. A. 1999 Coalescence of liquid drops. J. Fluid Mech. 401, 293310.
Eifert, A., Paulssen, D., Varanakkottu, S. N., Baier, T. & Hardt, S. 2014 Simple fabrication of robust water-repellent surfaces with low contact-angle hysteresis based on impregnation. Adv. Mater. Interfaces 1 (3), 1300138.
de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2003 Capillarity and Wetting Phenomena. Springer.
Gordillo, J. M., Sevilla, A., Rodríguez-Rodríguez, J. & Martinez-Bazan, C. 2005 Axisymmetric bubble pinch-off at high Reynolds numbers. Phys. Rev. Lett. 95 (19), 194501.
Kabla, A. & Debregeas, G. 2007 Quasi-static rheology of foams. Part 1. Oscillating strain. J. Fluid Mech. 587, 2344.
Lamb, H. 1916 Statics. Cambridge University Press.
Langbein, D. W. 2002 Capillary Surfaces: Shape-Stability-Dynamics, in Particular Under Weightlessness, 178 edn. Springer Science & Business Media.
Leppinen, D. & Lister, J. R. 2005 Capillary pinch-off of inciscid fluids at varying density ratios: the bubble limit. Bull. Am. Phys. Soc. 50, 63 (abstract only).
Longuet-Higgins, M., Kerman, B. R. & Lunde, K. 1991 The release of air bubbles from an underwater nozzle. J. Fluid Mech. 230, 365390.
López, P. G., Miksis, M. J. & Bankoff, S. G. 2001 Stability and evolution of a dry spot. Phys. Fluids 13 (6), 16011614.
Magnus, W., Oberhettinger, F. & Soni, R. P. 1966 Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. Springer.
de Maleprade, H., Clanet, C. & Quéré, D. 2016 Spreading of bubbles after contacting the lower side of an aerophilic slide immersed in water. Phys. Rev. Lett. 117 (9), 094501.
Moriarty, J. A. & Schwartz, L. W. 1993 Dynamic considerations in the closing and opening of holes in thin liquid films. J. Colloid Interface Sci. 161 (2), 335342.
Norbury, J., Sander, G. C. & Scott, C. F. 2004 Corner solutions of the Laplace–Young equation. Q. J. Mech. Appl. Maths 60 (1), 116.
Oguz, H. N. & Prosperetti, A. 1993 Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 257, 111.
Padday, J. F. 1971 The profiles of axially symmetric menisci. Phil. Trans. R. Soc. Lond. A 269 (1197), 265293.
Paulsen, J. D., Carmigniani, R., Kannan, A., Burton, J. C. & Nagel, S. R. 2014 Coalescence of bubbles and drops in an outer fluid. Nat. Commun. 5, 3182.
Redon, C., Brochard-Wyart, F. & Rondelez, F. 1991 Dynamics of dewetting. Phys. Rev. Lett. 66 (6), 715718.
Ristenpart, W. D., McCalla, P. M., Roy, R. V. & Stone, H. A. 2006 Coalescence of spreading droplets on a wettable substrate. Phys. Rev. Lett. 97 (6), 064501.
Sharma, A. & Ruckenstein, E. 1990 Energetic criteria for the breakup of liquid films on nonwetting solid surfaces. J. Colloid Interface Sci. 137 (2), 433445.
Song, J. L., Xu, W. J., Liu, X., Lu, Y. & Sun, J. 2012 Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability. Appl. Phys. A 108 (3), 559568.
Taylor, G. I. & Michael, D. H. 1973 On making holes in a sheet of fluid. J. Fluid Mech. 58 (04), 625639.
Texier, B. D., Piroird, K., Quéré, D. & Clanet, C. 2013 Inertial collapse of liquid rings. J. Fluid Mech. 717, R3.
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2007 Experiments on bubble pinch-off. Phys. Fluids 19 (4), 042101.
Thoroddsen, S. T., Etoh, T. G., Takehara, K. & Ootsuka, N. 2005 On the coalescence speed of bubbles. Phys. Fluids 17 (7), 07170.
Wilson, S. K. & Duffy, B. R. 1996 An asymptotic analysis of small holes in thin fluid layers. J. Engng Maths 30 (4), 445457.
Zheng, Z., Fontelos, M. A., Shin, S., Dallaston, M. C., Tseluiko, D., Kalliadasis, S. & Stone, H. A. 2018a Healing capillary films. J. Fluid Mech. 838, 404434.
Zheng, Z., Fontelos, M. A., Shin, S. & Stone, H. A. 2018b Universality in the nonlinear leveling of capillary films. Phys. Rev. Fluids 3 (3), 032001.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
VIDEO
Movies

Lv et al. supplementary movie 1
Hole collapse on a superhydrophobic Al plate viewed from the top. Initially, the hole diameter decreases very slowly when adding more water. The dynamics speed up significantly when d reaches dc.

 Video (1.8 MB)
1.8 MB
VIDEO
Movies

Lv et al. supplementary movie 1
Hole collapse on a superhydrophobic Al plate viewed from the top. Initially, the hole diameter decreases very slowly when adding more water. The dynamics speed up significantly when d reaches dc.

 Video (3.0 MB)
3.0 MB
PDF
Supplementary materials

Lv et al. supplementary material
Supplementary material

 PDF (771 KB)
771 KB
VIDEO
Movies

Lv et al. supplementary movie 2
Same experiment as is movie 1, but captured from the side. This movie starts after instability has already set in. After hole collapse, an air bubble is formed on the surface but finally vanishes in the indentations.

 Video (813 KB)
813 KB
VIDEO
Movies

Lv et al. supplementary movie 2
Same experiment as is movie 1, but captured from the side. This movie starts after instability has already set in. After hole collapse, an air bubble is formed on the surface but finally vanishes in the indentations.

 Video (1.6 MB)
1.6 MB
VIDEO
Movies

Lv et al. supplementary movie 3
Hole collapse in a water layer on a Teflon substrate in side view. After the hole is completely closed, there is an air bubble left at the center of the substrate.

 Video (609 KB)
609 KB
VIDEO
Movies

Lv et al. supplementary movie 3
Hole collapse in a water layer on a Teflon substrate in side view. After the hole is completely closed, there is an air bubble left at the center of the substrate.

 Video (1.0 MB)
1.0 MB
VIDEO
Movies

Lv et al. supplementary movie 4
Hole collapse on a hydrophilic silicon wafer in the side view. Different from the other three samples, here an acute angle at the three-phase contact line is observed. Line pinning is observed in the first stage when the hole is stable. However, beyond the stability threshold the hole collapses rather smoothly.

 Video (386 KB)
386 KB
VIDEO
Movies

Lv et al. supplementary movie 4
Hole collapse on a hydrophilic silicon wafer in the side view. Different from the other three samples, here an acute angle at the three-phase contact line is observed. Line pinning is observed in the first stage when the hole is stable. However, beyond the stability threshold the hole collapses rather smoothly.

 Video (845 KB)
845 KB
VIDEO
Movies

Lv et al. supplementary movie 5
High-speed video of the final stages of hole collapse on a superhydrophobic Al substrate in side view (recording speed 100 000 fps).

 Video (562 KB)
562 KB
VIDEO
Movies

Lv et al. supplementary movie 5
High-speed video of the final stages of hole collapse on a superhydrophobic Al substrate in side view (recording speed 100 000 fps).

 Video (1.3 MB)
1.3 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed